forked from HongduanTian/CoPA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_extractor_pa.py
132 lines (103 loc) · 5.37 KB
/
test_extractor_pa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
"""
This code allows you to evaluate performance of a single feature extractor + pa with NCC
on the test splits of all datasets (ilsvrc_2012, omniglot, aircraft, cu_birds, dtd, quickdraw, fungi,
vgg_flower, traffic_sign, mscoco, mnist, cifar10, cifar100).
To test the url model on the test splits of all datasets, run:
python test_extractor_pa.py --model.name=url --model.dir ./saved_results/url
To test the url model on the test splits of ilsrvc_2012, dtd, vgg_flower, quickdraw,
comment the line 'testsets = ALL_METADATASET_NAMES' and run:
python test_extractor_pa.py --model.name=url --model.dir ./saved_results/url -data.test ilsrvc_2012 dtd vgg_flower quickdraw
"""
from multiprocessing import context
import os
import sys
import torch
import tensorflow as tf
import numpy as np
from tqdm import tqdm
from tabulate import tabulate
from utils import check_dir, Recorder, setup_seed
from models.losses import prototype_loss, knn_loss, lr_loss, scm_loss, svm_loss
from models.model_utils import CheckPointer
from models.model_helpers import get_model
from models.pa import apply_selection, pa, pa_mlp
from data.meta_dataset_reader import (MetaDatasetEpisodeReader, MetaDatasetBatchReader, TRAIN_METADATASET_NAMES,
ALL_METADATASET_NAMES)
from config import args
tf.compat.v1.disable_eager_execution()
def main():
# set seed
setup_seed(seed_id=args['seed'])
TEST_SIZE = 600
head_type = 'linear'
# Setting up datasets
trainsets, valsets, testsets = args['data.train'], args['data.val'], args['data.test']
testsets = ALL_METADATASET_NAMES # comment this line to test the model on args['data.test']
if args['test.mode'] == 'mdl':
trainsets = TRAIN_METADATASET_NAMES
elif args['test.mode'] == 'sdl':
trainsets = ['ilsvrc_2012']
test_loader = MetaDatasetEpisodeReader('test', trainsets, trainsets, testsets, test_type=args['test.type'])
model = get_model(None, args)
checkpointer = CheckPointer(args, model, optimizer=None)
checkpointer.restore_model(ckpt='best', strict=False)
model.eval()
accs_names = ['NCC']
train_var_accs = dict()
var_accs = dict()
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = False
with tf.compat.v1.Session(config=config) as session:
# go over each test domain
for dataset in testsets:
if dataset in trainsets:
lr = 0.1
else:
lr = 1.
print(dataset)
train_var_accs[dataset] = {name:[] for name in accs_names}
var_accs[dataset] = {name: [] for name in accs_names}
for i in tqdm(range(TEST_SIZE)):
with torch.no_grad():
sample = test_loader.get_test_task(session, dataset)
context_features = model.embed(sample['context_images'])
target_features = model.embed(sample['target_images'])
context_labels = sample['context_labels']
target_labels = sample['target_labels']
# optimize selection parameters and perform feature selection
if head_type == 'linear':
selection_params, train_stats= pa(context_features, context_labels, target_features, target_labels,
max_iter=40, lr=lr, distance=args['test.distance'])
selected_context = apply_selection(context_features, selection_params)
selected_target = apply_selection(target_features, selection_params)
_, stats_dict, _ = prototype_loss(
selected_context, context_labels,
selected_target, target_labels, distance=args['test.distance'])
elif head_type == 'mlp':
train_stats, stats_dict = pa_mlp(context_features, context_labels, target_features, target_labels,
max_iter=40, lr=lr, distance=args['test.distance'])
train_var_accs[dataset]['NCC'].append(train_stats['acc'])
var_accs[dataset]['NCC'].append(stats_dict['acc'])
train_acc = np.array(train_var_accs[dataset]['NCC'])*100
dataset_acc = np.array(var_accs[dataset]['NCC']) * 100
print(f"{dataset}: train_acc {train_acc.mean():.2f}%; test_acc {dataset_acc.mean():.2f} +/- {(1.96*dataset_acc.std()) / np.sqrt(len(dataset_acc)):.2f}%")
# Print nice results table
print('results of {}'.format(args['experiment.name']))
rows = []
for dataset_name in testsets:
row = [dataset_name]
for model_name in accs_names:
acc = np.array(var_accs[dataset_name][model_name]) * 100
mean_acc = acc.mean()
conf = (1.96 * acc.std()) / np.sqrt(len(acc))
row.append(f"{mean_acc:0.2f} +- {conf:0.2f}")
rows.append(row)
out_path = os.path.join(args['out.dir'], 'weights')
out_path = check_dir(out_path, True)
out_path = os.path.join(out_path, '{}-{}-{}-{}-test-results.npy'.format(args['model.name'], args['test.type'], 'pa', args['test.distance']))
np.save(out_path, {'rows': rows})
table = tabulate(rows, headers=['model \\ data'] + accs_names, floatfmt=".2f")
print(table)
print("\n")
if __name__ == '__main__':
main()