-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
84 lines (60 loc) · 2.58 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "README-"
)
```
# iccbeta: Intraclass Correlation
<!-- badges: start -->
[![Build Status](https://travis-ci.org/tmsalab/iccbeta.svg)](https://travis-ci.org/tmsalab/iccbeta)
[![Package-License](http://img.shields.io/badge/license-GPL%20(%3E=2)-brightgreen.svg?style=flat)](http://www.gnu.org/licenses/gpl-2.0.html)
[![CRAN Version Badge](http://www.r-pkg.org/badges/version/iccbeta)](https://cran.r-project.org/package=iccbeta)
[![CRAN Status](https://cranchecks.info/badges/worst/iccbeta)](https://cran.r-project.org/web/checks/check_results_iccbeta.html)
[![RStudio CRAN Mirror's Monthly Downloads](http://cranlogs.r-pkg.org/badges/iccbeta?color=brightgreen)](http://www.r-pkg.org/pkg/iccbeta)
[![RStudio CRAN Mirror's Total Downloads](http://cranlogs.r-pkg.org/badges/grand-total/iccbeta?color=brightgreen)](http://www.r-pkg.org/pkg/iccbeta)
[![Coverage status](https://codecov.io/gh/tmsalab/iccbeta/branch/master/graph/badge.svg)](https://codecov.io/github/tmsalab/iccbeta?branch=master)
<!-- badges: end -->
A function and vignettes for computing an intraclass correlation
described in Aguinis & Culpepper (in press). `iccbeta` quantifies the
share of variance in a dependent variable that is attributed to group
heterogeneity in slopes.
## Installation
You can install `iccbeta` from CRAN using:
```{r cran-installation, eval = FALSE}
install.packages("iccbeta")
```
Or, you can be on the cutting-edge development version on GitHub using:
```{r gh-installation, eval = FALSE}
if(!requireNamespace("devtools")) install.packages("devtools")
devtools::install_github("tmsalab/iccbeta")
```
## Usage
To use the `iccbeta` package, load it into _R_ using:
```{r example, message = FALSE}
library("iccbeta")
```
From there, calling the `icc_beta()` function with either a `lmer()`
model object or the desired individual components will
compute the intraclass correlation:
```{r sample-call, eval = FALSE}
# Automatically calculate icc from model
results_model = icc_beta(<lmer-model>)
# Calculate icc from individual terms.
results_component = icc_beta(X, l2id, T, vy)
```
## Authors
Steven Andrew Culpepper and Herman Aguinis
## Citing the `iccbeta` package
To ensure future development of the package, please cite `iccbeta`
package if used during an analysis or simulation studies. Citation information
for the package may be acquired by using in *R*:
```{r, eval = FALSE}
citation("iccbeta")
```
## License
GPL (>= 2)