-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.qmd
66 lines (46 loc) · 1.6 KB
/
README.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# slcm
<!-- badges: start -->
[](https://github.com/tmsalab/slcm/actions/workflows/R-CMD-check.yaml)
[-brightgreen.svg?style=flat)](http://www.gnu.org/licenses/gpl-2.0.html)
<!-- badges: end -->
The goal of `slcm` is to provide an implementation of the exploratory
Sparse Latent Class Model (SLCM) for Binary Data described by Chen, Y.,
Culpepper, S. A., and Liang, F. (2020) <doi:10.1007/s11336-019-09693-2>.
This package contains a new implementation of the proposed SLCM based on the
paper. You may find original papers implementation in the
[`inst/` folder](https://github.com/tmsalab/slcm/tree/main/inst) of the package.
## Installation
You can install the released version of slcm from
[CRAN](https://CRAN.R-project.org) with:
``` r
install.packages("slcm")
```
Or, you can be on the cutting-edge development version on
[GitHub](https://github.com/) using:
``` r
# install.packages("devtools")
devtools::install_github("tmsalab/slcm")
```
## Usage
To use `slcm`, load the package using:
```r
library("slcm")
```
From here, the SLCM model can be estimated using:
```r
model_slcm = slcm::slcm(
y = <data>,
k = <k>
)
```
## Authors
James Joseph Balamuta and Steven Andrew Culpepper
## Citing the `slcm` package
To ensure future development of the package, please cite `slcm`
package if used during an analysis or simulation study. Citation
information for the package may be acquired by using in *R*:
``` r
citation("slcm")
```
## License
GPL (\>= 2)