-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathimagenet_classifier.py
executable file
·173 lines (159 loc) · 5.76 KB
/
imagenet_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/local/bin/python
''' Training a network on Imagenet.
'''
import sys
import argparse
import os.path
import glob
import tensorflow as tf
import image_processing
from inference import inference
import time
TRAIN_FILE = '/root/imagenet-data/train-00001-of-01024'
VALIDATION_FILE = '/root/imagenet-data/validation-00004-of-00128'
def data_files(dataset):
tf_record_pattern = os.path.join(FLAGS.data_dir, '%s-*' % dataset)
data_files = tf.gfile.Glob(tf_record_pattern)
return data_files
def run_training():
#data_files_ = TRAIN_FILE
#data_files_ = VALIDATION_FILE
data_files_ = data_files(FLAGS.train_or_validation)
images, labels = image_processing.distorted_inputs(
data_files_, FLAGS.num_epochs, batch_size=FLAGS.batch_size)
labels = tf.one_hot(labels, 1000)
logits = inference(images)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=labels))
tf.summary.scalar('loss', loss)
correct_pred = tf.equal(tf.arg_max(logits,1), tf.argmax(labels,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
tf.summary.scalar('accuracy', accuracy)
merged_summary_op = tf.summary.merge_all()
train_op = tf.train.AdamOptimizer(epsilon=0.1).minimize(loss)
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess = tf.Session()
sess.run(init_op)
summary_writer = tf.summary.FileWriter(FLAGS.log_dir)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
#save/restore model
d={}
l = ['w1', 'b1', 'w2', 'b2', 'w3', 'b3', 'w4', 'b4', 'w5', 'b5', 'w_fc1', 'b_fc1', 'w_fc2', 'b_fc2', 'w_output', 'b_output']
for i in l:
d[i] = [v for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) if v.name == i+':0'][0]
saver = tf.train.Saver(d)
saver.restore(sess, FLAGS.model_path)
try:
step = 0
start_time = time.time()
while not coord.should_stop():
start_batch = time.time()
#train
_, loss_value, pred, acc = sess.run(
[train_op, loss, correct_pred, accuracy])
duration = time.time() - start_batch
if step % 100 == 0:
print('Step %d | loss = %.2f | accuracy = %.2f (%.3f sec/batch)')%(
step, loss_value, acc, duration)
if step % 5000 == 0:
saver.save(sess, FLAGS.model_path)
step +=1
except tf.errors.OutOfRangeError:
print('Done training for %d epochs, %d steps, %.1f min.' % (FLAGS.num_epochs, step, (time.time()-start_time)/60))
finally:
coord.request_stop()
coord.join(threads)
sess.close()
def evaluation():
#data_files_ = TRAIN_FILE
data_files_ = data_files(FLAGS.train_or_validation)
images, labels = image_processing.inputs(
data_files_, FLAGS.num_epochs, batch_size=FLAGS.batch_size)
labels = tf.one_hot(labels, 1000)
logits = inference(images)
correct_pred = tf.equal(tf.arg_max(logits,1), tf.argmax(labels,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess = tf.Session()
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
#save/restore model
d={}
l = ['w1', 'b1', 'w2', 'b2', 'w3', 'b3', 'w4', 'b4', 'w5', 'b5', 'w_fc1', 'b_fc1', 'w_fc2', 'b_fc2', 'w_output', 'b_output']
for i in l:
d[i] = [v for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) if v.name == i+':0'][0]
saver = tf.train.Saver(d)
saver.restore(sess, FLAGS.model_path)
try:
step = 0
start_time = time.time()
while not coord.should_stop():
start_batch = time.time()
acc = sess.run(accuracy)
duration = time.time() - start_batch
print('Step %d | accuracy = %.2f (%.3f sec/batch)')%(
step, acc, duration)
step +=1
except tf.errors.OutOfRangeError:
print('Done evaluating for %d epochs, %d steps, %.1f min.' % (FLAGS.num_epochs, step, (time.time()-start_time)/60))
finally:
coord.request_stop()
coord.join(threads)
sess.close()
def main(_):
if FLAGS.train_or_validation == 'train':
print ' *** run training.'
print FLAGS.train_or_validation
run_training()
else:
print ' *** run validation.'
print FLAGS.train_or_validation
evaluation()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--learning_rate',
type=float,
default=0.001,
help='Initial learning rate.'
)
parser.add_argument(
'--data_dir',
type=str,
default='/root/imagenet-data',
help='Directory with training data.'
)
parser.add_argument(
'--num_epochs',
type=int,
default=None,
help='Number of epochs to run trainer.'
)
parser.add_argument(
'--batch_size',
type=int,
default=64,
help='Batch size.'
)
parser.add_argument(
'--log_dir',
type=str,
default='/tmp/tf',
help='Tensorboard log_dir.'
)
parser.add_argument(
'--model_path',
type=str,
default='/tmp/tf/model.ckpt',
help='Variables for the model.'
)
parser.add_argument(
'--train_or_validation',
type=str,
default='train',
help='Train or evaluate the dataset'
)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)