-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdcp_roi_timecourse_extract.m
147 lines (132 loc) · 4.58 KB
/
dcp_roi_timecourse_extract.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
function [roi_tcs]=dcp_roi_timecourse_extract(data,mask,method,filt_pb,dtrnd)
% Code by Michael J. Tobia, Ph.D. as part of the
% Dynamic Connectivity Processing (DCP) toolbox
% DCP_v1.1 release 12/18/2018
%
% This function will compute ROI time courses with either of 2 methods. It
% takes fMRI volumes and an MRI mask parcellation in AFNI format as inputs.
%
% Inputs:
% 1. data is a string with path/filename+orig.BRIK; data should be fully
% preprocessed before taking their regional averages (ideally)
% 2. mask is string with path/filename+orig.BRIK with parcellation into N ROIs
% 3. method==1 is average signal in an roi; method==2 is first eigenvector
% 4. filt_pb is filter passband [lf hf fs], e.g., [.01 .15 .5]; THIS WILL
% BANDPASS FILTER THE SIGNALS BEFORE TAKING THEIR REGIONAL AVERAGE
%
% Outputs:
% 1. roi_tcs_mean is a Time x ROIs matrix ready for dFC processing
%
% NOTES:
% 1. Method 1 & 2 will produce virtually identical results. To make
% method 1 equal to method 2 just divide method 1 by the norm of the mean signal
% for example, roi_tcs_mean(:,1)./norm(roi_tcs_mean(:,1)) == U(:,1)
%
% 2. Global signal regression is hardcoded; default=0 for do NOT do it !!!
% If you want to perform global signal regression then this option will compute
% the global signal over all voxels in the inclusion mask and then regress it
% from each voxel after detrending the voxel time series
%
%
if ~exist('BrikLoad.m','file') || ~exist('WriteBrik.m','file') || ~exist('afni_matlab','dir')
error('This function requires the afni_matlab toolbox.');
end
gsr=0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ndims(data)~=4
[dpath,dfname,ext]=fileparts(data);
else
ext=[];
end
if ndims(mask)~=3
[mpath,mfname,mext]=fileparts(mask);
else
mext=[];
end
if ~exist('data','var') || isempty(data)
error('Enter some data and options please')
elseif ~isempty(ext) && strcmp(ext,'.nii')
V=spm_vol(data);
[BRIK,~]=spm_read_vols(V);
elseif ~isempty(ext) && strcmp(ext,'.BRIK') || strcmp(ext,'.gz')
[~,BRIK,~,~]=BrikLoad(data);
elseif isempty(ext) && ndims(data)==4
BRIK=data;
end
if ~exist('mask','var') || isempty(mask)
% [~,MASK,~,~]=BrikLoad('/home/mtobia/BN_Atlas_246_2mm_PhysLearn+tlrc.BRIK');
elseif ~isempty(mext) && strcmp(mext,'.nii') || ~isempty(mext) && strcmp(mext,'.gz')
if strcmp(mext,'.gz')
mask=mask(1:end-3);
end
Vm=spm_vol(mask);
[MASK,~]=spm_read_vols(Vm);
elseif ~isempty(mext) && strcmp(mext,'.BRIK')
cd([filesep,mpath])
[~,MASK,~,~]=BrikLoad(mask);
elseif isempty(mext) && ndims(mask)==3
MASK=mask;
end
cd([filesep,dpath])
if ~exist('method','var') || isempty(method)
method=1;
end
if ~exist('filt_pb','var') || isempty(filt_pb)
filt_pb=[];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[xd,yd,zd,td]=size(BRIK);
MASK_rs=reshape(MASK,1,xd*yd*zd);
BRIK_rs=reshape(BRIK,xd*yd*zd,td)';
this0=find(MASK_rs==0);
% this1=find(MASK_rs>0); % Not used in this function
BRIK_mask=BRIK_rs;BRIK_mask(:,this0)=[];
MASK_rs(this0)=[];
voxels=size(BRIK_mask,2);
rois=length(unique(MASK_rs));
roi_tcs=zeros(td,rois);
if gsr==1
globalsig=mean(BRIK_mask,2);
Xmoreg=zeros(size(BRIK_mask));
for loop1=1:size(BRIK_mask,2)
tempsig=detrend(BRIK_mask(:,loop1)); % detrend linear
[~,~,Xmoreg(:,loop1),~]=regress(tempsig,globalsig); % global sig regression
end
BRIK_mask=Xmoreg;
end
if exist('filt_pb','var')==1 && ~isempty(filt_pb)==1
[mpad,mfront,~]=dcp_mirror_pad(BRIK_mask);
% Wp=[filt_pb(1) filt_pb(2)]/(filt_pb(3)/2);
% Q=.75;Ws=[Wp(1)*Q Wp(2)/Q];
% Rp=3;Rs=60;
% [bw_ord,~]=buttord(Wp,Ws,Rp,Rs);
bw_ord=4;bpfilt=zeros(size(mpad));
for vox=1:voxels
bpfilt(:,vox)=dcp_buttfilt(mpad(:,vox),bw_ord,filt_pb(1),filt_pb(2),filt_pb(3));
end
BRIK_mask=bpfilt(mfront+1:end,:);
BRIK_mask=BRIK_mask(1:td,:);
end
if dtrnd==1
BRIK_mask=detrend(BRIK_mask);
end
if method==1
% METHOD 1: average signal in each ROI
for roi=1:rois
roi_tcs(:,roi)=mean(BRIK_mask(:,MASK_rs==roi),2);
if exist('filt_pb','var')==1 && ~isempty(filt_pb)==1
roi_tcs(:,roi)=dcp_buttfilt(roi_tcs(:,roi),bw_ord,filt_pb(1),filt_pb(2),filt_pb(3));
end
end
end
if method==2
% METHOD 2: first eigenvector in each ROI
for roi=1:rois
[U,~,~]=svd(BRIK_mask(:,MASK_rs==roi));
roi_tcs(:,roi)=U(:,1);
if exist('filt_pb','var')==1 && ~isempty(filt_pb)==1
roi_tcs(:,roi)=dcp_buttfilt(roi_tcs(:,roi),bw_ord,filt_pb(1),filt_pb(2),filt_pb(3));
end
end
end
end