-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathserver.py
120 lines (92 loc) · 3.24 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import sys
import os
sys.path.append(os.getcwd())
import shutil
from flask import Flask, request
import torch as t
import json
from flask_cors import CORS, cross_origin
# from .vad import vad
import os
print("Loading model...")
import json
import torch as t
from src.model.rnn_lm.rnn_lm import ClassifierWithState
from src.model.rnn_lm.rnn_lm import RNNLM
from src.model.transformer_rezero import LightningModel
import pandas as pd
def load_rnn_lm():
keys = json.load(open('rnnlm_3/model.json'))
rnn = RNNLM(n_vocab=keys['n_vocab'], n_units=keys['unit'], n_layers=keys['layer'], n_embed=None, typ=keys['type'])
rnn_model = ClassifierWithState(rnn)
rnn_model.load_state_dict(t.load('rnnlm_3/rnnlm.model.best'))
rnn_model.eval()
return rnn_model
def load_model():
model = LightningModel.load_from_metrics(
'exp/lightning_logs/version_2000/checkpoints/epoch=100_v8.ckpt',
'exp/lightning_logs/version_2000/meta_tags.csv'
)
val_dataloader = model.val_dataloader()
model.eval()
return model, val_dataloader
def load_token_list(path='testing_vocab.vocab'):
with open(path) as reader:
data = reader.readlines()
data = [i.split('\t')[0] for i in data]
return data
def parse_output(output, char_list):
parsed_outputs = []
for i in output:
parsed_output = {}
token = [clist[j] for j in i['yseq']]
score = i['score']
parsed_output = {'token': ''.join(token).replace('<s>', '').replace('</s>', ''), 'score': score}
parsed_outputs.append(parsed_output)
return parsed_outputs
def load_manifest(path):
return pd.read_csv(path)
clist = load_token_list()
rnn_model = load_rnn_lm()
model, val_loader = load_model()
pipe = val_loader.dataset.datasets[0]
print("Model loaded")
app = Flask(__name__)
@app.route("/recognize", methods=["POST"])
@cross_origin(origin='http://172.18.34.25', headers=['Content-Type'])
def recognize():
f = request.files["file"]
beam = request.files['beam']
print(f)
f.save("test.wav")
feature, feature_length = pipe.load_wav('test.wav')
feature = t.from_numpy(feature)
feature_length = t.LongTensor([feature_length])
with t.no_grad():
output = model.transformer.recognize(
feature.unsqueeze(0), feature_length, beam=10, penalty=0, ctc_weight=0.35, maxlenratio=0.35,
minlenratio=0, char_list=clist, rnnlm=rnn_model, lm_weight=0.1, nbest=10
)
parsed_outputs = parse_output(output, clist)
return parsed_outputs
#
# @app.route("/recognize_long", methods=["POST"])
# @cross_origin(origin='http://172.18.34.25', headers=['Content-Type'])
# def recognize_long():
# f = request.files["file"]
# print(f)
# f.save("test.wav")
# if os.path.exists('tmp_long/'):
# shutil.rmtree('tmp_long/')
# os.mkdir('tmp_long/')
# vad(2, 'test.wav', 'tmp_long/')
# tmp_list = os.listdir('tmp_long/')
# all_ = []
# for i in tmp_list:
# with t.no_grad():
# feature, length = parser.parser_wav_inference(i)
# output = model.beam_decode_feature(feature.float().cuda(), length.cuda())
# all_.append(output)
# return ' '.join(all_)
if __name__ == '__main__':
app.run("0.0.0.0", debug=True, port=5000)