-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcostFunction.m
58 lines (52 loc) · 1.5 KB
/
costFunction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
function [J, grad] = costFunction(theta, X, y)
%COSTFUNCTION Compute cost and gradient for logistic regression
% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
% parameter for logistic regression and the gradient of the cost
% w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
%
%g = 1 ./ (1 + exp(- X * theta));
%sigf = sigmoid(X * theta);
expth = exp(- X * theta);
siglog = -log(1 + expth);
signlog = siglog + log(expth);
%for i = 1:m
% if sigf(i) == 1
% signlog(i) = 0;
% end
% if sigf(i) == 0
% siglog(i) = 0;
% end
%end
%for i = 1:m
% if y == 1
% signlog(i) = 0;
% end
% if y == 0
% siglog(i) = 0;
% end
%end
%siglog
%signlog
J = - ( y' * siglog + (1-y)' * signlog ) / m;
%costp = (sigmoid(X * theta) - y)'; %'
%for i = 1:size(theta)
% grad(i) = costp * X(:,i);
%end
grad = X' * (sigmoid(X * theta) - y) ./m; %'
%B = ones(length(y),1);
%K = (B - y - y.* expth) ./ (B + expth);
%grad = X' * K ./ m; %'
% =============================================================
end