-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcostFunctionReg.m
32 lines (24 loc) · 1.2 KB
/
costFunctionReg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
expth = exp(- X * theta);
siglog = -log(1 + expth);
signlog = siglog + log(expth);
J = - ( y' * siglog + (1-y)' * signlog ) / m + theta' * theta * lambda / (2 * m) - ...
theta(1) * theta(1) * lambda / (2 * m); %'
grad = X' * (sigmoid(X * theta) - y) ./m + theta .* (lambda / m); %'
grad(1) = grad(1) - theta(1) * (lambda / m);
% =============================================================
end