You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Welcome to the EEG Signal Analysis repository, focusing on the extraction of P300 signals using synchronous averaging techniques. This project aims to provide insights into the optimal number of repetitions required to reliably capture the P300 response, a crucial component in various applications such as BCIs and cognitive neuroscience research.
For my MSc dissertation, and in my role as a research data analyst, I am undertaking an analysis of electroencephalography data to investigate whether detection of the P300 neural signal can be utilised within an EEG Brain-Computer Interface to discern information from the minds of individuals, without the need for explicit communication.
Conduct research on the effect of different proportions of visual target and non-target stimulations on the brain, through data analysis on event related potential collected.
This example compares the classification performance of linear support vector machine (LinearSVC) on the Riemannian Transfer Learning method (RPA, Rodrigues et al., 2018) and the golden-standard subject-wise train-test cross-validation method using real P300 BCI data.
Assess ICA-denoising impact on the analysis of the event related potential P300, for an Autism Spectrum Disorder BCI dataset. Reject different numbers of Independent Components and compare them to common noise sources of EEG acquisitions.