Skip to content

Commit b952f44

Browse files
committed
remove commented code
1 parent f4f4bac commit b952f44

File tree

1 file changed

+14
-102
lines changed

1 file changed

+14
-102
lines changed

scripts/gradio-ui.py

Lines changed: 14 additions & 102 deletions
Original file line numberDiff line numberDiff line change
@@ -1,73 +1,29 @@
1-
import logging
21
import os
32
import pickle
4-
from datetime import datetime
5-
from typing import Optional
63

74
import chromadb
85
import gradio as gr
96
import logfire
107
from custom_retriever import CustomRetriever
118
from dotenv import load_dotenv
129
from llama_index.agent.openai import OpenAIAgent
13-
from llama_index.core import VectorStoreIndex, get_response_synthesizer
14-
from llama_index.core.agent import AgentRunner, ReActAgent
15-
16-
# from llama_index.core.chat_engine import (
17-
# CondensePlusContextChatEngine,
18-
# CondenseQuestionChatEngine,
19-
# ContextChatEngine,
20-
# )
21-
from llama_index.core.data_structs import Node
10+
from llama_index.core import VectorStoreIndex
2211
from llama_index.core.llms import MessageRole
2312
from llama_index.core.memory import ChatMemoryBuffer
2413
from llama_index.core.node_parser import SentenceSplitter
25-
from llama_index.core.query_engine import RetrieverQueryEngine
2614
from llama_index.core.retrievers import VectorIndexRetriever
27-
from llama_index.core.tools import (
28-
FunctionTool,
29-
QueryEngineTool,
30-
RetrieverTool,
31-
ToolMetadata,
32-
)
33-
34-
# from llama_index.core.vector_stores import (
35-
# ExactMatchFilter,
36-
# FilterCondition,
37-
# FilterOperator,
38-
# MetadataFilter,
39-
# MetadataFilters,
40-
# )
15+
from llama_index.core.tools import RetrieverTool, ToolMetadata
4116
from llama_index.embeddings.openai import OpenAIEmbedding
42-
from llama_index.llms.gemini import Gemini
4317
from llama_index.llms.openai import OpenAI
44-
from llama_index.llms.openai.utils import GPT4_MODELS
4518
from llama_index.vector_stores.chroma import ChromaVectorStore
46-
from tutor_prompts import (
47-
TEXT_QA_TEMPLATE,
48-
QueryValidation,
49-
system_message_openai_agent,
50-
system_message_validation,
51-
system_prompt,
52-
)
53-
54-
load_dotenv()
55-
19+
from tutor_prompts import system_message_openai_agent
5620

5721
# from utils import init_mongo_db
5822

59-
logging.getLogger("gradio").setLevel(logging.INFO)
60-
logging.getLogger("httpx").setLevel(logging.WARNING)
23+
load_dotenv()
24+
6125
logfire.configure()
62-
# logging.basicConfig(handlers=[logfire.LogfireLoggingHandler("INFO")])
63-
# logger = logging.getLogger(__name__)
6426

65-
# # This variables are used to intercept API calls
66-
# # launch mitmweb
67-
# cert_file = "/Users/omar/Documents/mitmproxy-ca-cert.pem"
68-
# os.environ["REQUESTS_CA_BUNDLE"] = cert_file
69-
# os.environ["SSL_CERT_FILE"] = cert_file
70-
# os.environ["HTTPS_PROXY"] = "http://127.0.0.1:8080"
7127

7228
CONCURRENCY_COUNT = int(os.getenv("CONCURRENCY_COUNT", 64))
7329
MONGODB_URI = os.getenv("MONGODB_URI")
@@ -131,7 +87,6 @@
13187
use_async=True,
13288
)
13389
vector_retriever = VectorIndexRetriever(
134-
# filters=filters,
13590
index=index,
13691
similarity_top_k=10,
13792
use_async=True,
@@ -204,12 +159,10 @@ def generate_completion(
204159
chat_list = memory.get()
205160

206161
if len(chat_list) != 0:
207-
# Compute number of interactions
208162
user_index = [
209163
i for i, msg in enumerate(chat_list) if msg.role == MessageRole.USER
210164
]
211165
if len(user_index) > len(history):
212-
# A message was removed, need to update the memory
213166
user_index_to_remove = user_index[len(history)]
214167
chat_list = chat_list[:user_index_to_remove]
215168
memory.set(chat_list)
@@ -237,40 +190,9 @@ def generate_completion(
237190
# )
238191
# custom_retriever = CustomRetriever(vector_retriever, document_dict)
239192

240-
if model == "gemini-1.5-flash" or model == "gemini-1.5-pro":
241-
llm = Gemini(
242-
api_key=os.getenv("GOOGLE_API_KEY"),
243-
model=f"models/{model}",
244-
temperature=1,
245-
max_tokens=None,
246-
)
247-
else:
248-
llm = OpenAI(temperature=1, model=model, max_tokens=None)
249-
client = llm._get_client()
250-
logfire.instrument_openai(client)
251-
252-
# response_synthesizer = get_response_synthesizer(
253-
# llm=llm,
254-
# response_mode="simple_summarize",
255-
# text_qa_template=TEXT_QA_TEMPLATE,
256-
# streaming=True,
257-
# )
258-
259-
# custom_query_engine = RetrieverQueryEngine(
260-
# retriever=custom_retriever,
261-
# response_synthesizer=response_synthesizer,
262-
# )
263-
264-
# agent = CondensePlusContextChatEngine.from_defaults(
265-
# agent = CondenseQuestionChatEngine.from_defaults(
266-
267-
# agent = ContextChatEngine.from_defaults(
268-
# retriever=custom_retriever,
269-
# context_template=system_prompt,
270-
# llm=llm,
271-
# memory=memory,
272-
# verbose=True,
273-
# )
193+
llm = OpenAI(temperature=1, model=model, max_tokens=None)
194+
client = llm._get_client()
195+
logfire.instrument_openai(client)
274196

275197
query_engine_tools = [
276198
RetrieverTool(
@@ -282,23 +204,13 @@ def generate_completion(
282204
)
283205
]
284206

285-
if model == "gemini-1.5-flash" or model == "gemini-1.5-pro":
286-
agent = AgentRunner.from_llm(
287-
llm=llm,
288-
tools=query_engine_tools, # type: ignore
289-
verbose=True,
290-
memory=memory,
291-
# system_prompt=system_message_openai_agent,
292-
)
293-
else:
294-
agent = OpenAIAgent.from_tools(
295-
llm=llm,
296-
memory=memory,
297-
tools=query_engine_tools, # type: ignore
298-
system_prompt=system_message_openai_agent,
299-
)
207+
agent = OpenAIAgent.from_tools(
208+
llm=llm,
209+
memory=memory,
210+
tools=query_engine_tools, # type: ignore
211+
system_prompt=system_message_openai_agent,
212+
)
300213

301-
# completion = custom_query_engine.query(query)
302214
completion = agent.stream_chat(query)
303215

304216
answer_str = ""

0 commit comments

Comments
 (0)