-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheemd.m
163 lines (133 loc) · 3.81 KB
/
eemd.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
function allmode = eemd(Y, Nstd, NE)
% -------------------------------------------------------------------------
%
% Ensemble Empirical Mode Decomposition
%
% INPUT:
% Y: Inputted data;
% Nstd: ratio of the standard deviation of the added noise and that of Y;
% NE: Ensemble number for the EEMD
%
% OUTPUT:
% A matrix of N*(m+1) matrix, where N is the length of the input
% data Y, and m=fix(log2(N))-1. Column 1 is the original data, columns 2, 3, ...
% m are the IMFs from high to low frequency, and comlumn (m+1) is the
% residual (over all trend).
%
% NOTE:
% It should be noted that when Nstd is set to 0 and NE is set to 1, the
% program degenerates to a EMD program
%
% -------------------------------------------------------------------------
xsize = length(Y);
dd = 1:1:xsize;
Ystd = std(Y);
Y = Y / Ystd;
TNM = fix(log2(xsize)) - 1;
TNM2 = TNM + 2;
allmode = zeros(xsize, TNM2);
for kk = 1:1:TNM2
for ii = 1:1:xsize
allmode(ii, kk) = 0.0;
end
end
for iii = 1:1:NE
X1 = zeros(1, xsize);
for i = 1:1:xsize,
temp = randn * Nstd;
X1(i) = Y(i)+temp;
end
mode = zeros(xsize, 1);
for jj = 1:1:xsize,
mode(jj, 1) = Y(jj);
end
xorigin = X1;
xend = xorigin;
nmode = 1;
while nmode <= TNM
xstart = xend;
iter = 1;
while iter <= 10,
[spmax, spmin, ~] = extrema(xstart);
upper = spline(spmax(:,1), spmax(:,2), dd);
lower = spline(spmin(:,1), spmin(:,2), dd);
mean_ul = (upper + lower) / 2;
xstart = xstart - mean_ul;
iter = iter +1;
end
xend = xend - xstart;
nmode = nmode+1;
for jj = 1:1:xsize,
mode(jj, nmode) = xstart(jj);
end
end
for jj = 1:1:xsize,
mode(jj, nmode+1) = xend(jj);
end
allmode = allmode + mode;
end
allmode = allmode / NE;
allmode = allmode * Ystd;
end
function [spmax, spmin, flag] = extrema(in_data)
flag = 1;
dsize = length(in_data);
spmax(1, 1) = 1;
spmax(1, 2) = in_data(1);
jj = 2;
kk = 2;
while jj < dsize
if (in_data(jj-1) <= in_data(jj)) && (in_data(jj) >= in_data(jj+1))
spmax(kk,1) = jj;
spmax(kk,2) = in_data (jj);
kk = kk + 1;
end
jj = jj + 1;
end
spmax(kk, 1) = dsize;
spmax(kk, 2) = in_data(dsize);
if kk >= 4
slope1 = (spmax(2, 2) - spmax(3, 2)) / (spmax(2, 1) - spmax(3, 1));
tmp1 = slope1 * (spmax(1, 1) - spmax(2, 1)) + spmax(2, 2);
if tmp1 > spmax(1, 2)
spmax(1, 2) = tmp1;
end
slope2 = (spmax(kk-1, 2) - spmax(kk-2, 2)) / (spmax(kk-1, 1) - spmax(kk-2, 1));
tmp2 = slope2 * (spmax(kk, 1) - spmax(kk-1, 1)) + spmax(kk-1, 2);
if tmp2 > spmax(kk, 2)
spmax(kk, 2) = tmp2;
end
else
flag=-1;
end
msize = size(in_data);
dsize = max(msize);
spmin(1, 1) = 1;
spmin(1, 2) = in_data(1);
jj = 2;
kk = 2;
while jj < dsize,
if (in_data(jj-1) >= in_data(jj)) && (in_data(jj) <= in_data(jj+1))
spmin(kk, 1) = jj;
spmin(kk, 2) = in_data (jj);
kk = kk + 1;
end
jj = jj + 1;
end
spmin(kk, 1) = dsize;
spmin(kk, 2) = in_data(dsize);
if kk >= 4
slope1 = (spmin(2, 2) - spmin(3, 2)) / (spmin(2, 1) - spmin(3, 1));
tmp1 = slope1 * (spmin(1, 1) - spmin(2, 1)) + spmin(2, 2);
if tmp1 < spmin(1, 2)
spmin(1, 2) = tmp1;
end
slope2 = (spmin(kk-1, 2) - spmin(kk-2, 2)) / (spmin(kk-1, 1) - spmin(kk-2, 1));
tmp2 = slope2 * (spmin(kk, 1) - spmin(kk-1, 1)) + spmin(kk-1, 2);
if tmp2 < spmin(kk, 2)
spmin(kk, 2) = tmp2;
end
else
flag = -1;
end
end