-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtg_all_machine_learning_cuda8.Dockerfile
232 lines (193 loc) · 6.82 KB
/
tg_all_machine_learning_cuda8.Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#first build this one
# nvidia-docker build -t tg/all_machine_learning:3 -f tg_all_machine_learning_cuda8.Dockerfile .
#then
# nvidia-docker build -t tg/base_all_machine_learning:3 -f tg_base_all_machine_learning_3.Dockerfile .
#original at https://github.com/saiprashanths/dl-docker/edit/master/Dockerfile.gpu
FROM nvidia/cuda:8.0-cudnn6-devel
#also available , cuda8 + cudnn6
MAINTAINER Sai Soundararaj <saip@outlook.com>
#update these if cuda8 cudnn5 works
ARG THEANO_VERSION=rel-0.8.2
ARG TENSORFLOW_VERSION=0.8.0
ARG TENSORFLOW_ARCH=gpu
ARG KERAS_VERSION=1.0.3
ARG LASAGNE_VERSION=v0.1
ARG TORCH_VERSION=latest
ARG CAFFE_VERSION=master
ARG YOLO_VERSION=master
#RUN echo -e "\n**********************\nNVIDIA Driver Version\n**********************\n" && \
# cat /proc/driver/nvidia/version && \
# echo -e "\n**********************\nCUDA Version\n**********************\n" && \
# nvcc -V && \
# echo -e "\n\nBuilding your Deep Learning Docker Image...\n"
# Install some dependencies
#libopenjpeg5 not 2 for ubuntu16
RUN apt-get update && apt-get install -y \
bc \
build-essential \
cmake \
curl \
g++ \
gfortran \
git \
libffi-dev \
libfreetype6-dev \
libhdf5-dev \
libjpeg-dev \
liblcms2-dev \
libopenblas-dev \
liblapack-dev \
libopenjpeg5 \
libpng12-dev \
libssl-dev \
libtiff5-dev \
libwebp-dev \
libzmq3-dev \
nano \
pkg-config \
python-dev \
software-properties-common \
unzip \
vim \
wget \
zlib1g-dev \
&& \
apt-get clean && \
apt-get autoremove && \
rm -rf /var/lib/apt/lists/* && \
# Link BLAS library to use OpenBLAS using the alternatives mechanism (https://www.scipy.org/scipylib/building/linux.html#debian-ubuntu)
update-alternatives --set libblas.so.3 /usr/lib/openblas-base/libblas.so.3
# Install pip
RUN curl -O https://bootstrap.pypa.io/get-pip.py && \
python get-pip.py && \
rm get-pip.py
# Add SNI support to Python
RUN pip --no-cache-dir install \
pyopenssl \
ndg-httpsclient \
pyasn1
# Install useful Python packages using apt-get to avoid version incompatibilities with Tensorflow binary
# especially numpy, scipy, skimage and sklearn (see https://github.com/tensorflow/tensorflow/issues/2034)
RUN apt-get update && apt-get install -y \
python-numpy \
python-scipy \
python-nose \
python-h5py \
python-skimage \
python-matplotlib \
python-pandas \
python-sklearn \
python-sympy \
&& \
apt-get clean && \
apt-get autoremove && \
rm -rf /var/lib/apt/lists/*
# Install other useful Python packages using pip
RUN pip --no-cache-dir install --upgrade ipython && \
pip --no-cache-dir install \
Cython \
ipykernel \
jupyter \
path.py \
Pillow \
pygments \
six \
sphinx \
wheel \
zmq \
&& \
python -m ipykernel.kernelspec
# Install TensorFlow
RUN pip --no-cache-dir install \
https://storage.googleapis.com/tensorflow/linux/${TENSORFLOW_ARCH}/tensorflow-${TENSORFLOW_VERSION}-cp27-none-linux_x86_64.whl
# Install dependencies for Caffe
RUN apt-get update && apt-get install -y \
libboost-all-dev \
libgflags-dev \
libgoogle-glog-dev \
libhdf5-serial-dev \
libleveldb-dev \
liblmdb-dev \
libopencv-dev \
libprotobuf-dev \
libsnappy-dev \
protobuf-compiler \
&& \
apt-get clean && \
apt-get autoremove && \
rm -rf /var/lib/apt/lists/*
# Install Caffe
RUN git clone -b ${CAFFE_VERSION} --depth 1 https://github.com/BVLC/caffe.git /root/caffe && \
cd /root/caffe && \
cat python/requirements.txt | xargs -n1 pip install && \
mkdir build && cd build && \
#### below is the only line jr changed from the original at https://github.com/saiprashanths/dl-docker/edit/master/Dockerfile.gpu
cmake -DUSE_CUDNN=1 -DBLAS=Open -DBUILD_python=ON -DBUILD_python_layer=ON .. && \
make -j"$(nproc)" all && \
make install
# Set up Caffe environment variables
ENV CAFFE_ROOT=/root/caffe
ENV PYCAFFE_ROOT=$CAFFE_ROOT/python
ENV PYTHONPATH=$PYCAFFE_ROOT:$PYTHONPATH \
PATH=$CAFFE_ROOT/build/tools:$PYCAFFE_ROOT:$PATH
RUN echo "$CAFFE_ROOT/build/lib" >> /etc/ld.so.conf.d/caffe.conf && ldconfig
# Install Theano and set up Theano config (.theanorc) for CUDA and OpenBLAS
RUN pip --no-cache-dir install git+git://github.com/Theano/Theano.git@${THEANO_VERSION} && \
\
echo "[global]\ndevice=gpu\nfloatX=float32\noptimizer_including=cudnn\nmode=FAST_RUN \
\n[lib]\ncnmem=0.95 \
\n[nvcc]\nfastmath=True \
\n[blas]\nldflag = -L/usr/lib/openblas-base -lopenblas \
\n[DebugMode]\ncheck_finite=1" \
> /root/.theanorc
# Install Keras
RUN pip --no-cache-dir install git+git://github.com/fchollet/keras.git@${KERAS_VERSION}
# Install Lasagne
RUN pip --no-cache-dir install git+git://github.com/Lasagne/Lasagne.git@${LASAGNE_VERSION}
# Install Torch #
#this isnt working since install.sh has a sudo command
#RUN git clone https://github.com/torch/distro.git /root/torch --recursive
#WORKDIR /root/torch
##RUN bash install-deps && \
## yes no | ./install.sh
#RUN bash install-deps ./install.sh
# Export the LUA evironment variables manually
#ENV LUA_PATH='/root/.luarocks/share/lua/5.1/?.lua;/root/.luarocks/share/lua/5.1/?/init.lua;/root/torch/install/share/lua/5.1/?.lua;/root/torch/install/share/lua/5.1/?/init.lua;./?.lua;/root/torch/install/share/luajit-2.1.0-beta1/?.lua;/usr/local/share/lua/5.1/?.lua;/usr/local/share/lua/5.1/?/init.lua' \
# LUA_CPATH='/root/.luarocks/lib/lua/5.1/?.so;/root/torch/install/lib/lua/5.1/?.so;./?.so;/usr/local/lib/lua/5.1/?.so;/usr/local/lib/lua/5.1/loadall.so' \
# PATH=/root/torch/install/bin:$PATH \
# LD_LIBRARY_PATH=/root/torch/install/lib:$LD_LIBRARY_PATH \
# DYLD_LIBRARY_PATH=/root/torch/install/lib:$DYLD_LIBRARY_PATH
#ENV LUA_CPATH='/root/torch/install/lib/?.so;'$LUA_CPATH
# Install the latest versions of nn, cutorch, cunn, cuDNN bindings and iTorch
#RUN luarocks install nn && \
# luarocks install cutorch && \
# luarocks install cunn && \
\
# cd /root && git clone https://github.com/soumith/cudnn.torch.git && cd cudnn.torch && \
# git checkout R4 && \
# luarocks make && \
\
# cd /root && git clone https://github.com/facebook/iTorch.git && \
# cd iTorch && \
# luarocks make
#yolo
RUN git clone https://github.com/pjreddie/darknet /root/darknet
WORKDIR /root/darknet
#set opencv on allowing viewing images/detections - prob. not necessary
#actually dont do this as it automatically pos a window which docker doesnt like
#RUN sed -i.bak 's/OPENCV=0/OPENCV=1/' Makefile
#set gpu on
RUN sed -i.bak 's/GPU=0/GPU=1/' Makefile
RUN sed -i.bak 's/CUDNN=0/CUDNN=1/' Makefile
RUN make
#get yolo weights
RUN wget http://pjreddie.com/media/files/yolo.weights
#those are prob same as https://pjreddie.com/media/files/yolo.weights
#conv weights from extraction model
RUN wget https://pjreddie.com/media/files/darknet19_448.conv.23
# Jupyter has issues with being run directly: https://github.com/ipython/ipython/issues/7062
#COPY run_jupyter.sh /root/
# Expose Ports for TensorBoard (6006), Ipython (8888)
EXPOSE 6006 8888
WORKDIR "/root"
CMD ["/bin/bash"]