-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstant-recursive_factorization_method.sf
57 lines (42 loc) · 1.62 KB
/
constant-recursive_factorization_method.sf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/ruby
# Author: Daniel "Trizen" Șuteu
# Date: 02 March 2021
# https://github.com/trizen
# A new factorization method for numbers that have prime factors close to each other, using a modular constant-recursive sequence.
# The idea is to try to find a non-trivial factor of `n` by checking:
#
# gcd(f(n) - f(k), n)
#
# for several small k >= 1, where f(n) is a C-finite sequence.
func f(n, m) {
powmod(2, n, m)
#Quadratic(5, 3, 2).powmod(n, m) -> a
#Gauss(3, 5).powmod(n, m) -> real
#fibmod(n, m)
#lucasUmod(4, 3, n, m)
#lucasVmod(8, -2, n, m)
}
func constant_recursive_factor(n, tries = 1e4) {
var z = f(n, n) || return 1
if (z == 1) {
return 1
}
tries.times { |k|
var t = f(k, n) || next
var g = gcd(z-t, n)
if (g.is_between(2, n-1)) {
return g
}
}
return 1
}
var p = 1e20.random_prime
var n = (p * p.next_prime * p.next_prime.next_prime)
say "Factoring: #{n}"
say ("Factor found: ", constant_recursive_factor(n))
say ''
say constant_recursive_factor(777154480374632653) #=> 919447
say constant_recursive_factor(1169586052690021349455126348204184925097724507) #=> 166585508879747
say constant_recursive_factor(61881629277526932459093227009982733523969186747) #=> 1233150073853267
say constant_recursive_factor(173315617708997561998574166143524347111328490824959334367069087) #=> 173823271649325368927
say constant_recursive_factor(random_prime(1e30) * (2**128 + 1)) #=> 340282366920938463463374607431768211457