-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathk-powerful_numbers_in_range.sf
79 lines (58 loc) · 1.95 KB
/
k-powerful_numbers_in_range.sf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/usr/bin/ruby
# Daniel "Trizen" Șuteu
# Date: 28 February 2021
# https://github.com/trizen
# Fast recursive algorithm for generating all the k-powerful numbers in a given range [a,b].
# A positive integer n is considered k-powerful, if for every prime p that divides n, so does p^k.
# Example:
# 2-powerful = a^2 * b^3, for a,b >= 1
# 3-powerful = a^3 * b^4 * c^5, for a,b,c >= 1
# 4-powerful = a^4 * b^5 * c^6 * d^7, for a,b,c,d >= 1
# OEIS:
# https://oeis.org/A001694 -- 2-powerful numbers
# https://oeis.org/A036966 -- 3-powerful numbers
# https://oeis.org/A036967 -- 4-powerful numbers
# https://oeis.org/A069492 -- 5-powerful numbers
# https://oeis.org/A069493 -- 6-powerful numbers
func powerful_numbers(A, B, k=2) {
var powerful = []
func (m,r) {
var from = 1
var upto = iroot(idiv(B, m), r)
if (r <= k) {
if (A > m) {
# Optimization by Dana Jacobsen (from Math::Prime::Util::PP)
with (idiv_ceil(A,m)) {|l|
if ((l >> r) == 0) {
from = 2
}
else {
from = l.iroot(r)
from++ if (ipow(from, r) != l)
}
}
}
return nil if (from > upto)
for j in (from .. upto) {
powerful << (m * ipow(j, r))
}
return nil
}
for j in (from .. upto) {
j.is_coprime(m) || next
j.is_squarefree || next
__FUNC__(m * ipow(j, r), r-1)
}
}(1, 2*k - 1)
powerful.sort
}
var a = 1e5.irand
var b = 1e7.irand
for k in (2..5) {
say "Testing: k = #{k}"
assert_eq(
powerful_numbers(a, b, k),
k.powerful(a, b)
)
}
say powerful_numbers(1e6 - 1e4, 1e6, 2) #=> [990025, 990125, 990584, 991232, 992016, 994009, 995328, 996004, 996872, 998001, 998784, 1000000]