-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnear-power_factorization_method.sf
68 lines (50 loc) · 1.9 KB
/
near-power_factorization_method.sf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/ruby
# Daniel "Trizen" Șuteu
# Date: 03 June 2019
# https://github.com/trizen
# A simple factorization method for numbers close to a perfect power.
# Very effective for numbers of the form:
#
# n^k - 1
#
# where k has many divisors.
func near_power_factorization(n, bound=100) {
var orig = n
func f(r, e, k) {
var factors = gather {
e.divisors.each {|d|
for j in (1, -1) {
var t = (r**d - k*j)
var g = gcd(t, n)
if (g.is_between(2, n-1)) {
while (g.divides(n)) {
n /= g
take(g)
}
}
}
}
}
factors << orig/factors.prod
factors.sort
}
for j in (1..bound) {
for k in (1, -1) {
var u = (k * j**2)
if (is_power(n + u)) {
var r = perfect_root(n + u)
var e = perfect_power(n + u)
return f(r, e, j)
}
}
}
return [n]
}
if (ARGV) {
say near_power_factorization(Num(ARGV[0]))
return 1
}
say near_power_factorization(2**256 - 1) #=> [3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, 340282366920938463463374607431768211457]
say near_power_factorization(10**120 + 1) #=> [100000001, 9999999900000001, 99999999000000009999999900000001, 10000000099999999999999989999999899999999000000000000000100000001]
say near_power_factorization(10**120 - 1) #=> [3, 9, 11, 37, 91, 101, 9091, 9901, 10001, 11111, 90090991, 99009901, 99990001, 109889011, 9999000099990001, 10099989899000101, 100009999999899989999000000010001]
say near_power_factorization(10**120 - 25) #=> [3, 5, 5, 29, 2298850574712643678160919540229885057471264367816091954023, 199999999999999999999999999999999999999999999999999999999999]