-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpower_sigma.sf
62 lines (51 loc) · 1.76 KB
/
power_sigma.sf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/bin/ruby
# Sum and count of the k-th power divisors of n.
# See also:
# https://oeis.org/A035316
# https://oeis.org/A113061
# https://oeis.org/A046951
func power_sigma0(n,k) {
n.factor_prod {|_,e|
floor(e/k) + 1
}
}
func power_sigma(n, k, j=1) {
return 0 if (n == 0)
return power_sigma0(n,k) if (j == 0)
n.factor_prod {|p,e|
(p**(j*k*(1+floor(e/k))) - 1) / (p**(j*k) - 1)
}
}
for n in (1..20) {
say "sum of square divisors of #{n} is #{power_sigma(n, 2)}"
assert_eq(power_sigma(n, 2), 2.power_divisors(n).sum)
assert_eq(power_sigma(n, 3), 3.power_divisors(n).sum)
assert_eq(power_sigma(n, 4), 4.power_divisors(n).sum)
assert_eq(power_sigma(n, 2, 2), 2.power_divisors(n).sum { _**2 })
assert_eq(power_sigma(n, 3, 2), 3.power_divisors(n).sum { _**2 })
assert_eq(power_sigma(n, 4, 2), 4.power_divisors(n).sum { _**2 })
assert_eq(power_sigma(n, 2, 3), 2.power_divisors(n).sum { _**3 })
assert_eq(power_sigma(n, 3, 3), 3.power_divisors(n).sum { _**3 })
assert_eq(power_sigma(n, 4, 3), 4.power_divisors(n).sum { _**3 })
}
__END__
sum of square divisors of 1 is 1
sum of square divisors of 2 is 1
sum of square divisors of 3 is 1
sum of square divisors of 4 is 5
sum of square divisors of 5 is 1
sum of square divisors of 6 is 1
sum of square divisors of 7 is 1
sum of square divisors of 8 is 5
sum of square divisors of 9 is 10
sum of square divisors of 10 is 1
sum of square divisors of 11 is 1
sum of square divisors of 12 is 5
sum of square divisors of 13 is 1
sum of square divisors of 14 is 1
sum of square divisors of 15 is 1
sum of square divisors of 16 is 21
sum of square divisors of 17 is 1
sum of square divisors of 18 is 10
sum of square divisors of 19 is 1
sum of square divisors of 20 is 5