-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetection.py
executable file
·120 lines (87 loc) · 2.95 KB
/
detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
""" Performs detection using trained model.
CL Args:
-i Path to input video file.
-o Path to output video file.
--model Path to trained model.
--heat_map Path to heatmap save file.
"""
from nets import SegmentationModel
from skimage.transform import rescale
import numpy as np
import matplotlib.pyplot as plt
import skvideo.io
from skimage.color import rgb2gray
from skimage.util import img_as_ubyte
from keras.utils import multi_gpu_model
from util import get_parser
from scipy.ndimage.measurements import label
import warnings
warnings.filterwarnings("ignore")
def heat_map(frame, m, n):
i, j = frame.shape
HM = np.zeros((i // m, j // n))
for ii in np.arange(0, i, m):
for jj in np.arange(0, j, n):
pom = frame[ii:ii + m, jj:jj + n]
labeled_array, num_labels = label(pom)
HM[ii // m, jj // n] = num_labels
return HM
patch_size = 64
m = 64
n = 64
args = get_parser().parse_args()
INPUT_FILE = args.input
outfile = args.output
heat = args.heat_map
metadata = skvideo.io.ffprobe(INPUT_FILE)
rate = metadata['video']['@r_frame_rate']
width = int(metadata['video']['@width'])
height = int(metadata['video']['@height'])
videodata = skvideo.io.FFmpegReader(INPUT_FILE)
writer = skvideo.io.FFmpegWriter(outfile, inputdict={'-r': rate},
outputdict={'-r': rate, '-pix_fmt': 'yuv420p'})
model = SegmentationModel(input_shape=(height, width, 5))
try:
model = multi_gpu_model(model)
except Exception:
pass
model.load_weights(args.model)
X = np.zeros((1, height, width, 5))
X[0, :, :, 0] = rgb2gray(next(videodata.nextFrame()))
X[0, :, :, 0] -= 0.5
X[0, :, :, 1] = rgb2gray(next(videodata.nextFrame()))
X[0, :, :, 1] -= 0.5
X[0, :, :, 2] = rgb2gray(next(videodata.nextFrame()))
X[0, :, :, 2] -= 0.5
X[0, :, :, 3] = rgb2gray(next(videodata.nextFrame()))
X[0, :, :, 3] -= 0.5
writer.writeFrame(img_as_ubyte(np.zeros((height, width))))
writer.writeFrame(img_as_ubyte(np.zeros((height, width))))
try:
for k, f in enumerate(videodata.nextFrame()):
print(k)
X[0, :, :, 4] = rgb2gray(f)
X[0, :, :, 4] -= 0.5
pred = model.predict(X)
ff = rescale(pred[0, :, :, 0], 2, anti_aliasing=False)
writer.writeFrame(img_as_ubyte(ff))
frame_1 = ff[0:(height // patch_size) * patch_size, 0:(width // patch_size) * patch_size] > 0.15
HM = heat_map(frame_1, m, n)
if k == 0:
mapa = HM
else:
mapa = mapa + HM
X[0, :, :, 0] = X[0, :, :, 1].copy()
X[0, :, :, 1] = X[0, :, :, 2].copy()
X[0, :, :, 2] = X[0, :, :, 3].copy()
X[0, :, :, 3] = X[0, :, :, 4].copy()
except RuntimeError:
a = 0
plt.figure()
plt.imshow(mapa, cmap='hot')
plt.colorbar()
plt.title("Heatmap of input video on patch size " + str(m) + "x" + str(n) + ".")
plt.savefig(heat + str(m) + 'x' + str(n) + '.pdf', bbox_inches='tight')
np.save(heat + str(m) + 'x' + str(n), mapa)
videodata.close()
writer.close()