-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathevaluate.py
449 lines (380 loc) · 20.2 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
#!/usr/bin/env python
# coding: utf-8
from collections import Counter
from prettytable import PrettyTable
import os
from transformers import AutoTokenizer
import torch
from torch.utils.data import Dataset
import pandas as pd
from datasets import load_dataset, load_metric
import csv
from ast import literal_eval
import numpy as np
import torch
import torch.nn as nn
import transformers
from datasets import load_dataset, load_metric
import logging
import dataclasses
from torch.utils.data.dataloader import DataLoader
from transformers.training_args import is_torch_tpu_available
from transformers.trainer_pt_utils import get_tpu_sampler
from transformers.data.data_collator import DataCollator, InputDataClass
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data.sampler import RandomSampler, SequentialSampler
from typing import List, Union, Dict
from transformers import DataCollatorForTokenClassification
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.file_utils import PaddingStrategy
from typing import Optional, Any
from sklearn.metrics import confusion_matrix
from multiTaskModel import MultitaskModel, StrIgnoreDevice, DataLoaderWithTaskname, MultitaskDataloader, MultitaskTrainer, MyDataCollatorForTokenClassification, compute_f1, compute_macro_f1, eval_f1
import argparse
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
id2label_argType = ['B-Distinguishing',
'B-Einschätzungsspielraum',
'B-Entscheidung des EGMR',
'B-Konsens der prozessualen Parteien',
'B-Overruling',
'B-Rechtsvergleichung',
'B-Sinn & Zweck Auslegung',
'B-Subsumtion',
'B-Systematische Auslegung',
'B-Verhältnismäßigkeitsprüfung – Angemessenheit',
'B-Verhältnismäßigkeitsprüfung – Geeignetheit',
'B-Verhältnismäßigkeitsprüfung – Legitimer Zweck',
'B-Verhältnismäßigkeitsprüfung – Rechtsgrundlage',
'B-Vorherige Rechtsprechung des EGMR',
'B-Wortlaut Auslegung',
'I-Distinguishing',
'I-Einschätzungsspielraum',
'I-Entscheidung des EGMR',
'I-Konsens der prozessualen Parteien',
'I-Overruling',
'I-Rechtsvergleichung',
'I-Sinn & Zweck Auslegung',
'I-Subsumtion',
'I-Systematische Auslegung',
'I-Verhältnismäßigkeitsprüfung – Angemessenheit',
'I-Verhältnismäßigkeitsprüfung – Geeignetheit',
'I-Verhältnismäßigkeitsprüfung – Legitimer Zweck',
'I-Verhältnismäßigkeitsprüfung – Rechtsgrundlage',
'I-Vorherige Rechtsprechung des EGMR',
'I-Wortlaut Auslegung',
'O']
label2id_argType = {}
for i, label in enumerate(id2label_argType):
label2id_argType[label] = i
id2label_agent = ['B-Beschwerdeführer',
'B-Dritte',
'B-EGMR',
'B-Kommission/Kammer',
'B-Staat',
'I-Beschwerdeführer',
'I-Dritte',
'I-EGMR',
'I-Kommission/Kammer',
'I-Staat',
'O']
label2id_agent = {}
for i, label in enumerate(id2label_agent):
label2id_agent[label] = i
def tokenize_and_align_labels_argType(examples, label_all_tokens=False):
"""
Tokenizes the input using the tokenizer and aligns the argument type labels to the subwords.
:param examples: input dataset
:param label_all_tokens: Whether to label all subwords of a token or only the first subword
:return: Tokenized input"""
tokenized_inputs = tokenizer(examples['tokens'], truncation=True, is_split_into_words=True)
labels = []
for i, label in enumerate(examples['labels']):
word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
label_ids = []
for word_idx in word_ids:
# Special tokens have a word id that is None. We set the label to -100 so they are automatically
# ignored in the loss function.
if word_idx is None:
label_ids.append(-100)
# We set the label for the first token of each word.
elif word_idx != previous_word_idx:
label_ids.append(label2id_argType[label[word_idx]])
# For the other tokens in a word, we set the label to either the current label or -100, depending on
# the label_all_tokens flag.
else:
label_ids.append(label2id_argType[label[word_idx]] if label_all_tokens else -100)
previous_word_idx = word_idx
labels.append(label_ids)
tokenized_inputs["labels"] = labels
return tokenized_inputs
def tokenize_and_align_labels_agent(examples, label_all_tokens=False):
"""
Tokenizes the input using the tokenizer and aligns the agent labels to the subwords.
:param examples: input dataset
:param label_all_tokens: Whether to label all subwords of a token or only the first subword
:return: Tokenized input"""
tokenized_inputs = tokenizer(examples['tokens'], truncation=True, is_split_into_words=True)
labels = []
for i, label in enumerate(examples['labels']):
word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
label_ids = []
for word_idx in word_ids:
# Special tokens have a word id that is None. We set the label to -100 so they are automatically
# ignored in the loss function.
if word_idx is None:
label_ids.append(-100)
# We set the label for the first token of each word.
elif word_idx != previous_word_idx:
label_ids.append(label2id_agent[label[word_idx]])
# For the other tokens in a word, we set the label to either the current label or -100, depending on
# the label_all_tokens flag.
else:
label_ids.append(label2id_agent[label[word_idx]] if label_all_tokens else -100)
previous_word_idx = word_idx
labels.append(label_ids)
tokenized_inputs["labels"] = labels
return tokenized_inputs
def get_subset_df(tokens, predictions, labels, predlabel=None, truelabel=None):
"""
Can filter model predictions by predicted and true label. If none provided, just postprocesses and returns output.
:param tokens: text tokens
:param predictions: predictions of the model
:param labels: true annotator labels
:param predlabel: optional, filters the model predictions if a label is provided, e.g. label2id_agent['I-EGMR']
:param truelabels: optional, filters the true annotator labels if a label is provided, e.g. label2id_agent['I-EGMR']
:return: DataFrame with the (filtered) predictions, labels and tokens."""
pred = []
label = []
for p,l in zip(predictions, labels):
p = np.array(p)
l = np.array(l)
ind = np.logical_and(p > -1, l > -1)
pred.append(p[ind].tolist())
label.append(l[ind].tolist())
if predlabel is None and truelabel is None:
return pd.DataFrame({'Predictions': pred, 'Labels': label, 'Tokens': tokens})
elif predlabel is None:
preds = []
labels = []
toks = []
for i,l in enumerate(label):
if truelabel in l[2:] and not truelabel in pred[i][2:]:
preds.append(pred[i])
labels.append(l)
toks.append(tokens[i])
return pd.DataFrame({'Predictions': preds, 'Labels': labels, 'Tokens': toks})
elif truelabel is None:
preds = []
labels = []
toks = []
for i,p in enumerate(pred):
if predlabel in p[2:] and not predlabel in label[i][2:]:
preds.append(p)
labels.append(llabel[i])
toks.append(tokens[i])
return pd.DataFrame({'Predictions': preds, 'Labels': labels, 'Tokens': toks})
else:
preds = []
labels = []
toks = []
for i,p in enumerate(pred):
if predlabel in p[2:] and truelabel in label[i][2:]:
preds.append(p)
labels.append(label[i])
toks.append(tokens[i])
return pd.DataFrame({'Predictions': preds, 'Labels': labels, 'Tokens': toks})
def save_predictions(tokens, predictions, labels, file):
"""
Saves the model predictions as csv after postprocessing them.
:param tokens: text tokens
:param predictions: predictions of the model
:param labels: true annotator labels
:param file: path of the output file
"""
df = get_subset_df(tokens, predictions, labels)
df.to_csv(file , sep='\t', encoding='utf-8', index=False)
if __name__ == '__main__':
# parse optional args
parser = argparse.ArgumentParser(description='Evaluate a MultiTask model and save its predictions')
parser.add_argument('--pathprefix', help='path to the project directory')
parser.add_argument('--models', nargs='*' ,help='paths to the models to evaluate')
parser.add_argument('--test_dir', help='path to the directory with the test files')
parser.add_argument('--val_dir', help='path to the directory with the dev files')
parser.add_argument('--output_dir', help='path to the output directory for saving the predictions')
parser.add_argument('--do_val', default=False, type=lambda x: (str(x).lower() == 'true'), help='whether to evaluate the validation/dev dataset')
parser.add_argument('--do_test', default=True, type=lambda x: (str(x).lower() == 'true'), help='whether to evaluate the test dataset')
args = parser.parse_args()
# project directory
pathprefix = '/ukp-storage-1/dfaber/'
pathprefix = '../Uni/masterthesis/'
pathprefix = ''
if args.pathprefix:
pathprefix = args.pathprefix
#test_dir = 'data/article_3/'
test_dir = 'data/test/'
if args.test_dir:
test_dir = args.test_dir
val_dir = 'data/val/'
if args.val_dir:
val_dir = args.val_dir
output_dir = 'predictions/'
if args.output_dir:
output_dir = args.output_dir
# load datasets
testfiles = [f for f in os.listdir(os.path.join(pathprefix, test_dir, 'argType/')) if f.endswith('.csv')]
valfiles = [f for f in os.listdir(os.path.join(pathprefix, val_dir, 'argType/')) if f.endswith('.csv')]
testfiles = testfiles[:2]
valfiles = valfiles[:2]
dataset_argType = load_dataset('csv', data_files={'test': [os.path.join(pathprefix, test_dir, 'argType/', file) for file in testfiles],
'validation': [os.path.join(pathprefix, val_dir, 'argType/', file) for file in valfiles]}, delimiter='\t')
dataset_actor = load_dataset('csv', data_files={'test': [os.path.join(pathprefix, test_dir, 'agent/', file) for file in testfiles],
'validation': [os.path.join(pathprefix, val_dir, 'agent/', file) for file in valfiles]}, delimiter='\t')
dataset_argType = dataset_argType.map(lambda x: {'tokens': literal_eval(x['tokens']), 'labels': literal_eval(x['labels'])})
dataset_actor = dataset_actor.map(lambda x: {'tokens': literal_eval(x['tokens']), 'labels': literal_eval(x['labels'])})
# models to evaluate
'''
models = ['/ukp-storage-1/dfaber/models/multitask/legal-bert-final/checkpoint-39820/bert', '/ukp-storage-1/dfaber/models/multitask/legal-bert-final/checkpoint-47784/bert',
'/ukp-storage-1/dfaber/models/multitask/legal-bert-final/checkpoint-55748/bert', '/ukp-storage-1/dfaber/models/multitask/legal-bert-final/checkpoint-71676/bert',
'/ukp-storage-1/dfaber/models/multitask/legal-bert-final/checkpoint-79640/bert', '/ukp-storage-1/dfaber/models/multitask/roberta-large-final/checkpoint-111482/roberta',
'/ukp-storage-1/dfaber/models/multitask/roberta-large-final/checkpoint-143334/roberta', '/ukp-storage-1/dfaber/models/multitask/roberta-large-final/checkpoint-159260/roberta',
'/ukp-storage-1/dfaber/models/multitask/roberta-large-fp-13000/checkpoint-95556/roberta', '/ukp-storage-1/dfaber/models/multitask/roberta-large-fp-13000/checkpoint-127408/roberta',
'/ukp-storage-1/dfaber/models/multitask/roberta-large-fp-13000/checkpoint-143334/roberta', '/ukp-storage-1/dfaber/models/multitask/roberta-large-fp-13000/checkpoint-159260/roberta',
'/ukp-storage-1/dfaber/models/multitask/roberta-large-fp-15000/checkpoint-111482/roberta', '/ukp-storage-1/dfaber/models/multitask/roberta-large-fp-15000/checkpoint-127408/roberta',
'/ukp-storage-1/dfaber/models/multitask/roberta-large-fp-15000/checkpoint-143334/roberta', '/ukp-storage-1/dfaber/models/multitask/roberta-large-fp-15000/checkpoint-159260/roberta',
'/ukp-storage-1/dfaber/models/multitask/roberta-large-fp-final/checkpoint-143334/roberta']
'''
models = ['/ukp-storage-1/dfaber/models/multitask/legal-bert-final/checkpoint-39820/bert', '/ukp-storage-1/dfaber/models/multitask/legal-bert-final/checkpoint-47784/bert',
'/ukp-storage-1/dfaber/models/multitask/roberta-large-final/checkpoint-111482/roberta', '/ukp-storage-1/dfaber/models/multitask/roberta-large-final/checkpoint-143334/roberta',
'/ukp-storage-1/dfaber/models/multitask/roberta-large-fp-13000/checkpoint-95556/roberta', '/ukp-storage-1/dfaber/models/multitask/roberta-large-fp-13000/checkpoint-143334/roberta',
'/ukp-storage-1/dfaber/models/multitask/roberta-large-fp-15000/checkpoint-143334/roberta', '/ukp-storage-1/dfaber/models/multitask/roberta-large-fp-15000/checkpoint-159260/roberta']
models = ['/ukp-storage-1/dfaber/models/multitask/roberta-large-fp-15000/checkpoint-143334/roberta']
if args.models:
models = args.models
# Evaluate each model
for model in models:
print('\n\n\n\n********************Evaluating ', model, '********************\n\n\n\n')
# load model and tokenizer
multitask_model = torch.load(model)
tokenizer = AutoTokenizer.from_pretrained(multitask_model.encoder.name_or_path)
if model.split('/')[-1] == 'roberta':
tokenizer.add_prefix_space = True
if tokenizer.model_max_length > 1024:
tokenizer.model_max_length = 512
# preprocess data and create datasets
tokenized_dataset_argType = dataset_argType.map(tokenize_and_align_labels_argType, batched=True)
tokenized_dataset_actor = dataset_actor.map(tokenize_and_align_labels_agent, batched=True)
dataset_dict = {
"ArgType": tokenized_dataset_argType,
"Actor": tokenized_dataset_actor,
}
data_collator= MyDataCollatorForTokenClassification(tokenizer)
test_dataset = {
task_name: dataset["test"]
for task_name, dataset in dataset_dict.items()
}
val_dataset = {
task_name: dataset["validation"]
for task_name, dataset in dataset_dict.items()
}
# initialize Trainer
batch_size = 8
train_args = transformers.TrainingArguments(
'test_bert/legal_bert/',
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
)
trainer = MultitaskTrainer(
model=multitask_model,
args=train_args,
data_collator=data_collator,
eval_dataset=val_dataset,
tokenizer=tokenizer,
compute_metrics=eval_f1,
)
# evaluate validation data if specified
if args.do_val:
print('\n\n*****VALIDATION DATASET*****\n\n')
eval_dataloader_argType = DataLoaderWithTaskname(
'ArgType',
data_loader=DataLoader(
val_dataset['ArgType'],
batch_size=trainer.args.eval_batch_size,
collate_fn=trainer.data_collator.collate_batch,
),
)
preds_arg = trainer.prediction_loop(eval_dataloader_argType, description='Validation ArgType')
eval_dataloader_agent = DataLoaderWithTaskname(
'Actor',
data_loader=DataLoader(
val_dataset['Actor'],
batch_size=trainer.args.eval_batch_size,
collate_fn=trainer.data_collator.collate_batch,
),
)
preds_agent = trainer.prediction_loop(eval_dataloader_agent, description='Validation Agent')
# postprocess (remove -100 indices)
labels_argType_wordlevel = []
preds_argType_wordlevel = []
for l,p in zip(preds_arg.label_ids, np.argmax(preds_arg.predictions, axis=2)):
ind = np.logical_and(p > -1, l > -1)
labels_argType_wordlevel.append(l[ind])
preds_argType_wordlevel.append(p[ind])
print('ArgType:')
print('Macro F1: ', compute_macro_f1(gold=labels_argType_wordlevel, pred=preds_argType_wordlevel, id2label=id2label_argType))
# postprocess (remove -100 indices)
labels_agent_wordlevel = []
preds_agent_wordlevel = []
for l,p in zip(preds_agent.label_ids, np.argmax(preds_agent.predictions, axis=2)):
ind = np.logical_and(p > -1, l > -1)
labels_agent_wordlevel.append(l[ind])
preds_agent_wordlevel.append(p[ind])
print('Agent:')
print('Macro F1: ', compute_macro_f1(gold=labels_agent_wordlevel, pred=preds_agent_wordlevel, id2label=id2label_agent))
# save predictions
save_predictions(val_dataset['ArgType']['tokens'], np.argmax(preds_arg.predictions, axis=2), preds_arg.label_ids, os.path.join(pathprefix, output_dir, 'val_preds/', '_'.join(model.split('/')[-3:]) + '-argType.csv'))
save_predictions(val_dataset['Actor']['tokens'], np.argmax(preds_agent.predictions, axis=2), preds_agent.label_ids, os.path.join(pathprefix, output_dir, 'val_preds/', '_'.join(model.split('/')[-3:]) + '-agent.csv'))
# evaluate test data if specified
if args.do_test:
print('\n\n*****TEST DATASET*****\n\n')
eval_dataloader_argType = DataLoaderWithTaskname(
'ArgType',
data_loader=DataLoader(
test_dataset['ArgType'],
batch_size=trainer.args.eval_batch_size,
collate_fn=trainer.data_collator.collate_batch,
),
)
preds_arg = trainer.prediction_loop(eval_dataloader_argType, description='Validation ArgType')
eval_dataloader_agent = DataLoaderWithTaskname(
'Actor',
data_loader=DataLoader(
test_dataset['Actor'],
batch_size=trainer.args.eval_batch_size,
collate_fn=trainer.data_collator.collate_batch,
),
)
preds_agent = trainer.prediction_loop(eval_dataloader_agent, description='Validation Agent')
# postprocess (remove -100 indices)
labels_argType_wordlevel = []
preds_argType_wordlevel = []
for l,p in zip(preds_arg.label_ids, np.argmax(preds_arg.predictions, axis=2)):
ind = np.logical_and(p > -1, l > -1)
labels_argType_wordlevel.append(l[ind])
preds_argType_wordlevel.append(p[ind])
print('ArgType:')
print('Macro F1: ', compute_macro_f1(gold=labels_argType_wordlevel, pred=preds_argType_wordlevel, id2label=id2label_argType))
# postprocess (remove -100 indices)
labels_agent_wordlevel = []
preds_agent_wordlevel = []
for l,p in zip(preds_agent.label_ids, np.argmax(preds_agent.predictions, axis=2)):
ind = np.logical_and(p > -1, l > -1)
labels_agent_wordlevel.append(l[ind])
preds_agent_wordlevel.append(p[ind])
print('Agent:')
print('Macro F1: ', compute_macro_f1(gold=labels_agent_wordlevel, pred=preds_agent_wordlevel, id2label=id2label_agent))
# save predictions
save_predictions(test_dataset['ArgType']['tokens'], np.argmax(preds_arg.predictions, axis=2), preds_arg.label_ids, os.path.join(pathprefix, output_dir, '_'.join(model.split('/')[-3:]) + '-argType.csv'))
save_predictions(test_dataset['Actor']['tokens'], np.argmax(preds_agent.predictions, axis=2), preds_agent.label_ids, os.path.join(pathprefix, output_dir, '_'.join(model.split('/')[-3:]) + '-agent.csv'))