-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_jas20a_plus.m
166 lines (120 loc) · 4.31 KB
/
main_jas20a_plus.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
% MAIN_JAS20A_PLUS Script associated with Sipkens et al., J. Aerosol Sci. (2020a).
% Executes and compares deterministic inversions schemes.
% Relative to main_jas20a, this script adds Bayesian methods (for accuracy/timing)
% Author: Timothy Sipkens, 2022-09
%=========================================================================%
clear;
clc;
close all;
%-- Load colour schemes --------------------------------------------------%
addpath cmap;
cm = inferno;
cm = cm(40:end,:);
cm_b = cm;
cm = viridis;
%%
%== (1) ==================================================================%
% Phantom and reconstruction grid.
% High resolution version of the distribution to be projected to coarse
% grid to generate x.
span_t = [...
10^-1.5, 10^1.5; ... % range of masses
10, 10^3]; % range of mobilities
phantom = Phantom('1', span_t); % get one of the preset phantoms
x_t = phantom.x; % evaluated phantom
grid_t = phantom.grid; % grid on which phantom is defined
nmax = max(x_t);
cmax = nmax;
%== Generate x vector on coarser grid ====================================%
% This will be used later to gauge accuracy of reconstructions
n_x = [50,64]; % number of elements per dimension in x
% [20,32]; % used for plotting projections of basis functions
% [40,64]; % used in evaluating previous versions of regularization
grid_x = Grid([grid_t.span],...
n_x,'logarithmic');
x0 = grid_x.project(grid_t, x_t); % project into basis for x
figure(1);
phantom.plot;
colormap(gcf,[cm;1,1,1]);
caxis([0,cmax*(1+1/256)]);
hold on; % plots mg ridges of phantom
plot(log10(grid_t.edges{2}),...
log10(phantom.mg_fun(grid_t.edges{2})),'w:');
hold off;
%%
%== (2) ==================================================================%
% Compute kernel.
n_b = [14,50]; %[12,50]; %[17,35]; % size of the data
span_b = grid_t.span;
grid_b = Grid(span_b,...
n_b,'logarithmic'); % grid for data
prop_pma = kernel.prop_pma; % get default CPMA properties
% Generate A matrix based on grid for x_t (fine resolution) and b.
A_t = kernel.gen_pma_dma_grid(grid_b, grid_t, prop_pma, [], 'Rm', 3);
%{
% Alternative (MUCH slower) route to computing the transfer function.
sp = get_setpoint(prop_pma,... % get PMA setpoints
'm_star', grid_b.elements(:,1) .* 1e-18, ... % mass from the grid
'Rm', 3);
A_ta = kernel.gen_pma_dma(sp, grid_b.elements(:,2), grid_x, prop_pma);
%}
disp('Transform to discretization in x ...');
B = grid_x.transform(grid_t); % evaluate matrix modifier to transform kernel
A = A_t*B; % equivalent to integration, rebases kernel to grid for x (instead of x_t)
A = sparse(A);
tools.textdone();
disp(' ');
figure(2);
colormap(gcf,[cm;1,1,1]);
grid_x.plot2d_marg(x0, grid_t, x_t);
caxis([0,cmax*(1+1/256)]);
%%
%== (3) ==================================================================%
% Generate data.
b0 = A_t*x_t; % forward evaluate kernel (high dimension)
%-- Corrupt data with noise ----------------------------------------------%
b0(0<1e-10.*max(max(b0))) = 0; % zero very small values of b
Ntot = 1e5;
[b,Lb] = tools.get_noise(b0,Ntot);
figure(5);
colormap(gcf,cm_b);
grid_b.plot2d_marg(b);
figure(20);
grid_b.plot2d_sweep(b,cm_b);
%%
%== (4) ==================================================================%
% Invert.
% Run inversion for pre-selected regularization settings.
run_inversions_c_plus;
% Optimize inversion schemes, incurs much longer runtimes.
% run_inversions_a;
%%
%== (5) ==================================================================%
% Post-process / plot.
x_plot = x_tk1; % select Tikhonov (or other) reconstructions for plotting
figure(10); % plot reconstruction and marginal distributions
colormap(gcf,[cm;1,1,1]);
grid_x.plot2d_marg(x_plot,grid_t,x_t);
caxis([0,cmax*(1+1/256)]);
%%
%-- Bar plot of run times ------------------------------------------------%
figure(29);
t_names = fieldnames(t);
t_vals = zeros(length(t_names),1);
for ii=1:length(t_names)
t_vals(ii) = t.(t_names{ii});
end
t_vals = t_vals ./ max(t_vals)
bar(t_vals);
set(gca,'xticklabel',t_names);
set(gca, 'YScale', 'log');
%-- Bar plot of Euclidean error ------------------------------------------%
figure(30);
eps_names = fieldnames(eps);
eps_vals = zeros(length(eps_names),1);
for ii=1:length(eps_names)
eps_vals(ii) = eps.(eps_names{ii});
end
bar(eps_vals);
ylim([0, 30]);
set(gca,'xticklabel',eps_names);