Skip to content

Latest commit

 

History

History
214 lines (145 loc) · 8.02 KB

lab3.adoc

File metadata and controls

214 lines (145 loc) · 8.02 KB

Bonus Lab 3 - Use NiFi to call REST API, transform, route and store the data

Pick any REST API of your choice, but I have walked through this one to grab a number of weather stations reports.

workshopoverview

We are going to build a GenerateFlowFile to feed our REST calls.

generateflowfile
[
{"url":"http://weather.gov/xml/current_obs/CWAV.xml"},
{"url":"http://weather.gov/xml/current_obs/KTTN.xml"},
{"url":"http://weather.gov/xml/current_obs/KEWR.xml"},
{"url":"http://weather.gov/xml/current_obs/KEWR.xml"},
{"url":"http://weather.gov/xml/current_obs/CWDK.xml"},
{"url":"http://weather.gov/xml/current_obs/CWDZ.xml"},
{"url":"http://weather.gov/xml/current_obs/CWFJ.xml"},
{"url":"http://weather.gov/xml/current_obs/PAEC.xml"},
{"url":"http://weather.gov/xml/current_obs/PAYA.xml"},
{"url":"http://weather.gov/xml/current_obs/PARY.xml"},
{"url":"http://weather.gov/xml/current_obs/K1R7.xml"},
{"url":"http://weather.gov/xml/current_obs/KFST.xml"},
{"url":"http://weather.gov/xml/current_obs/KSSF.xml"},
{"url":"http://weather.gov/xml/current_obs/KTFP.xml"},
{"url":"http://weather.gov/xml/current_obs/CYXY.xml"},
{"url":"http://weather.gov/xml/current_obs/KJFK.xml"},
{"url":"http://weather.gov/xml/current_obs/KISP.xml"},
{"url":"http://weather.gov/xml/current_obs/KLGA.xml"},
{"url":"http://weather.gov/xml/current_obs/KNYC.xml"},
{"url":"http://weather.gov/xml/current_obs/KJRB.xml"}
]

So we are using ${url} which will be one of these. Feel free to pick your favorite airports or locations near you. https://w1.weather.gov/xml/current_obs/index.xml

If you wish to choose your own data adventure, you can pick one of these others. You will have to build your own table if you wish to store it. They return CSV, JSON or XML, since we have record processors we don’t care. Just know which you pick.

Then we will use SplitJSON to split the JSON records into single rows.

splitjson

Then use EvaluateJSONPath to extract the URL.

evaluatejsonpath2

Now we are going to call those REST URLs with InvokeHTTP.

You will need to create a Standard SSL controller.

enablessl
standardSSL
sslcontext

Truststore filename: /usr/lib/jvm/java-openjdk/jre/lib/security/cacerts Truststore password: changeit Truststore type: JKS TLS Protocol: TLS

invokehttp
invokehttp2

Then we are going to run a query to convert these and route based on our queries.

Example query on the current NOAA weather observations to look for temperature in fareneheit below 60 degrees. You can make a query with any of the fields in the where cause. Give it a try!

queryRecord

You will need to set the Record Writer and Record Reader:

Record Reader: XML Record Writer: JSON

jsonwriter
SELECT * FROM FLOWFILE
WHERE temp_f <= 60
SELECT * FROM FLOWFILE

Now we are splitting into three concurrent paths. This shows the power of Apache NiFi. We will write to Kudu, HDFS and Kafka.

For the results of our cold path (temp_f ⇐60), we will write to a Kudu table.

putkudu

Kudu Masters: edge2ai-1.dim.local:7051 Table Name: impala::default.weatherkudu Record Reader: Infer Json Tree Reader Kudu Operation Type: UPSERT

Before you run this, go to Hue and build the table.

huechooseimpala
huecreateweatherkudu
CREATE TABLE weatherkudu
(`location` STRING,`observation_time` STRING, `credit` STRING, `credit_url` STRING, `image` STRING, `suggested_pickup` STRING, `suggested_pickup_period` BIGINT,
`station_id` STRING, `latitude` DOUBLE, `longitude` DOUBLE,  `observation_time_rfc822` STRING, `weather` STRING, `temperature_string` STRING,
`temp_f` DOUBLE, `temp_c` DOUBLE, `relative_humidity` BIGINT, `wind_string` STRING, `wind_dir` STRING, `wind_degrees` BIGINT, `wind_mph` DOUBLE, `wind_gust_mph` DOUBLE, `wind_kt` BIGINT,
`wind_gust_kt` BIGINT, `pressure_string` STRING, `pressure_mb` DOUBLE, `pressure_in` DOUBLE, `dewpoint_string` STRING, `dewpoint_f` DOUBLE, `dewpoint_c` DOUBLE, `windchill_string` STRING,
`windchill_f` BIGINT, `windchill_c` BIGINT, `visibility_mi` DOUBLE, `icon_url_base` STRING, `two_day_history_url` STRING, `icon_url_name` STRING, `ob_url` STRING, `disclaimer_url` STRING,
`copyright_url` STRING, `privacy_policy_url` STRING,
PRIMARY KEY (`location`, `observation_time`)
)
PARTITION BY HASH PARTITIONS 4
STORED AS KUDU
TBLPROPERTIES ('kudu.num_tablet_replicas' = '1');

Let it run and query it.
huequeryweatherkudu

The Second fork is to Kafka, this will be for the 'all' path.

publishKafka

Kafka Brokers: edge2ai-1.dim.local:9092 Topic: weather Reader & Writer: reuse the JSON ones

The Third and final fork is to HDFS (could be ontop of S3 or Blob Storage) as Apache ORC files. This will also autogenerate the DDL for an external Hive table as an attribute, check your provenance after running.

mergerecord

JSON in and out for record readers/writers, you can adjust the time and size of your batch or use defaults.

putorc
putorc1
putorc2

Hadoop Config: /etc/hadoop/conf/hdfs-site.xml,/etc/hadoop/conf/core-site.xml Record Reader: Infer Json Directory: /tmp/weather Table Name: weather

Before we run, build the /tmp/weather directory in HDFS and give it 777 permissions. We can do this with Apache Hue.

createhdfsdir
changepermissionshdfsdir

Once we run we can get the table DDL and location:

putOrcProvenanceWeather

Go to Hue to create your table.

huetohive
CREATE EXTERNAL TABLE IF NOT EXISTS `weather`
(`credit` STRING, `credit_url` STRING, `image` STRUCT<`url`:STRING, `title`:STRING, `link`:STRING>, `suggested_pickup` STRING, `suggested_pickup_period` BIGINT,
`location` STRING, `station_id` STRING, `latitude` DOUBLE, `longitude` DOUBLE, `observation_time` STRING, `observation_time_rfc822` STRING, `weather` STRING, `temperature_string` STRING,
`temp_f` DOUBLE, `temp_c` DOUBLE, `relative_humidity` BIGINT, `wind_string` STRING, `wind_dir` STRING, `wind_degrees` BIGINT, `wind_mph` DOUBLE, `wind_gust_mph` DOUBLE, `wind_kt` BIGINT,
`wind_gust_kt` BIGINT, `pressure_string` STRING, `pressure_mb` DOUBLE, `pressure_in` DOUBLE, `dewpoint_string` STRING, `dewpoint_f` DOUBLE, `dewpoint_c` DOUBLE, `windchill_string` STRING,
`windchill_f` BIGINT, `windchill_c` BIGINT, `visibility_mi` DOUBLE, `icon_url_base` STRING, `two_day_history_url` STRING, `icon_url_name` STRING, `ob_url` STRING, `disclaimer_url` STRING,
`copyright_url` STRING, `privacy_policy_url` STRING)
STORED AS ORC
LOCATION '/tmp/weather'
weatherhdfslist

You can now use Apache Hue to query your tables and do some weather analytics. When we are upserting into Kudu we are ensuring no duplicate reports for a weather station and observation time.

select `location`, weather, temp_f, wind_string, dewpoint_string, latitude, longitude, observation_time
from weatherkudu
order by observation_time desc, station_id asc
select *
from weather
lab3flow

In Atlas, we can see the flow.

atlasTopic