forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
deep_EEGGraphConvNet.py
67 lines (52 loc) · 2.48 KB
/
deep_EEGGraphConvNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch.nn as nn
import torch.nn.functional as function
from dgl.nn import GraphConv, SumPooling
from torch.nn import BatchNorm1d
class EEGGraphConvNet(nn.Module):
""" EEGGraph Convolution Net
Parameters
----------
num_feats: the number of features per node. In our case, it is 6.
"""
def __init__(self, num_feats):
super(EEGGraphConvNet, self).__init__()
self.conv1 = GraphConv(num_feats, 16)
self.conv2 = GraphConv(16, 32)
self.conv3 = GraphConv(32, 64)
self.conv4 = GraphConv(64, 50)
self.conv4_bn = BatchNorm1d(50, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
self.fc_block1 = nn.Linear(50, 30)
self.fc_block2 = nn.Linear(30, 10)
self.fc_block3 = nn.Linear(10, 2)
# Xavier initializations
self.fc_block1.apply(lambda x: nn.init.xavier_normal_(x.weight, gain=1))
self.fc_block2.apply(lambda x: nn.init.xavier_normal_(x.weight, gain=1))
self.fc_block3.apply(lambda x: nn.init.xavier_normal_(x.weight, gain=1))
self.sumpool = SumPooling()
def forward(self, g, return_graph_embedding=False):
x = g.ndata['x']
edge_weight = g.edata['edge_weights']
x = self.conv1(g, x, edge_weight=edge_weight)
x = function.leaky_relu(x, negative_slope=0.01)
x = function.dropout(x, p=0.2, training=self.training)
x = self.conv2(g, x, edge_weight=edge_weight)
x = function.leaky_relu(x, negative_slope=0.01)
x = function.dropout(x, p=0.2, training=self.training)
x = self.conv3(g, x, edge_weight=edge_weight)
x = function.leaky_relu(x, negative_slope=0.01)
x = function.dropout(x, p=0.2, training=self.training)
x = self.conv4(g, x, edge_weight=edge_weight)
x = self.conv4_bn(x)
x = function.leaky_relu(x, negative_slope=0.01)
x = function.dropout(x, p=0.2, training=self.training)
# NOTE: this takes node-level features/"embeddings"
# and aggregates to graph-level - use for graph-level classification
out = self.sumpool(g, x)
if return_graph_embedding:
return out
out = function.leaky_relu(self.fc_block1(out), negative_slope=0.1)
out = function.dropout(out, p=0.2, training=self.training)
out = function.leaky_relu(self.fc_block2(out), negative_slope=0.1)
out = function.dropout(out, p=0.2, training=self.training)
out = self.fc_block3(out)
return out