forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_cls.py
158 lines (130 loc) · 5.15 KB
/
train_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from pct import PointTransformerCLS
from ModelNetDataLoader import ModelNetDataLoader
import provider
import argparse
import os
import tqdm
from functools import partial
from dgl.data.utils import download, get_download_dir
from torch.utils.data import DataLoader
import torch.nn as nn
import torch
import time
torch.backends.cudnn.enabled = False
parser = argparse.ArgumentParser()
parser.add_argument('--dataset-path', type=str, default='')
parser.add_argument('--load-model-path', type=str, default='')
parser.add_argument('--save-model-path', type=str, default='')
parser.add_argument('--num-epochs', type=int, default=250)
parser.add_argument('--num-workers', type=int, default=8)
parser.add_argument('--batch-size', type=int, default=32)
args = parser.parse_args()
num_workers = args.num_workers
batch_size = args.batch_size
data_filename = 'modelnet40_normal_resampled.zip'
download_path = os.path.join(get_download_dir(), data_filename)
local_path = args.dataset_path or os.path.join(
get_download_dir(), 'modelnet40_normal_resampled')
if not os.path.exists(local_path):
download('https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip',
download_path, verify_ssl=False)
from zipfile import ZipFile
with ZipFile(download_path) as z:
z.extractall(path=get_download_dir())
CustomDataLoader = partial(
DataLoader,
num_workers=num_workers,
batch_size=batch_size,
shuffle=True,
drop_last=True)
def train(net, opt, scheduler, train_loader, dev):
net.train()
total_loss = 0
num_batches = 0
total_correct = 0
count = 0
loss_f = nn.CrossEntropyLoss()
start_time = time.time()
with tqdm.tqdm(train_loader, ascii=True) as tq:
for data, label in tq:
data = data.data.numpy()
data = provider.random_point_dropout(data)
data[:, :, 0:3] = provider.random_scale_point_cloud(
data[:, :, 0:3])
data[:, :, 0:3] = provider.jitter_point_cloud(data[:, :, 0:3])
data[:, :, 0:3] = provider.shift_point_cloud(data[:, :, 0:3])
data = torch.tensor(data)
label = label[:, 0]
num_examples = label.shape[0]
data, label = data.to(dev), label.to(dev).squeeze().long()
opt.zero_grad()
logits = net(data)
loss = loss_f(logits, label)
loss.backward()
opt.step()
_, preds = logits.max(1)
num_batches += 1
count += num_examples
loss = loss.item()
correct = (preds == label).sum().item()
total_loss += loss
total_correct += correct
tq.set_postfix({
'AvgLoss': '%.5f' % (total_loss / num_batches),
'AvgAcc': '%.5f' % (total_correct / count)})
print("[Train] AvgLoss: {:.5}, AvgAcc: {:.5}, Time: {:.5}s".format(total_loss /
num_batches, total_correct / count, time.time() - start_time))
scheduler.step()
def evaluate(net, test_loader, dev):
net.eval()
total_correct = 0
count = 0
start_time = time.time()
with torch.no_grad():
with tqdm.tqdm(test_loader, ascii=True) as tq:
for data, label in tq:
label = label[:, 0]
num_examples = label.shape[0]
data, label = data.to(dev), label.to(dev).squeeze().long()
logits = net(data)
_, preds = logits.max(1)
correct = (preds == label).sum().item()
total_correct += correct
count += num_examples
tq.set_postfix({
'AvgAcc': '%.5f' % (total_correct / count)})
print("[Test] AvgAcc: {:.5}, Time: {:.5}s".format(
total_correct / count, time.time() - start_time))
return total_correct / count
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = PointTransformerCLS()
net = net.to(dev)
if args.load_model_path:
net.load_state_dict(torch.load(args.load_model_path, map_location=dev))
opt = torch.optim.SGD(
net.parameters(),
lr=0.01,
weight_decay=1e-4,
momentum=0.9
)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
opt, T_max=args.num_epochs)
train_dataset = ModelNetDataLoader(local_path, 1024, split='train')
test_dataset = ModelNetDataLoader(local_path, 1024, split='test')
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, drop_last=True)
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, drop_last=True)
best_test_acc = 0
for epoch in range(args.num_epochs):
print("Epoch #{}: ".format(epoch))
train(net, opt, scheduler, train_loader, dev)
if (epoch + 1) % 1 == 0:
test_acc = evaluate(net, test_loader, dev)
if test_acc > best_test_acc:
best_test_acc = test_acc
if args.save_model_path:
torch.save(net.state_dict(), args.save_model_path)
print('Current test acc: %.5f (best: %.5f)' % (
test_acc, best_test_acc))
print()