-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpara_hfhi_growth.py
197 lines (152 loc) · 4.97 KB
/
para_hfhi_growth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#
# extracting forward and backward components of e2. suitable for 1D data
#
# FST, (c) 2019 Regents of The University of California
#
import sys
# This is the path for Frank's Mac Pro
#
sys.path.append('/Users/franktsung/Documents/codes/python-tsung/')
sys.path.append('/Volumes/Lacie-5TB/codes/pyVisOS/')
#
#
import osh5io
import osh5def
import osh5vis
import osh5utils
from h5_utilities import *
import matplotlib.pyplot as plt
import sys
import getopt
import glob
import numpy as np
from mpi4py import MPI
def print_help():
print('python para_hfhi_growth.py [options] <zmin> <zmax> <kmax> <InputDir> <OutputDir>')
print('zmin = minimum z value saved')
print('zmax = maximum z value saved')
print('kmax = maximum k_perp saved')
print('InputDir - Location of the MS folder')
print('OutputDir - Location of the output folder')
print('options:')
print(' None Implemented Yet')
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
argc = len(sys.argv)
try:
opts, args = getopt.gnu_getopt(sys.argv[1:], "hxyn:", ['avg', 'env'])
except getopt.GetoptError:
print_help()
sys.exit(2)
if len(args) < 2:
print_help()
sys.exit(2)
zmin = args[0]
zmax = args[1]
kmax = args[2]
dirName = args[3]
outDir = args[4]
dir_ext = ''
for opt, arg in opts:
if opt == '-h':
print_help()
sys.exit()
elif opt == '--avg':
dir_ext = '-savg'
elif opt == '--env':
dir_ext = '-senv'
elif opt == '-n':
density = float(arg)
else:
print(print_help())
sys.exit(2)
index_of_refraction = np.sqrt(1-density)
v_phase = 1/index_of_refraction
print( repr(index_of_refraction)+' , '+repr(v_phase) )
e1 = sorted(glob.glob(dirName + '/FLD/e1' + dir_ext + '/*.h5'))
e2 = sorted(glob.glob(dirName + '/FLD/e2' + dir_ext + '/*.h5'))
total_time = len(e1)
my_share = total_time // size
i_begin = rank * my_share
if rank < (size - 1):
i_end = (rank + 1) * my_share
else:
i_end = total_time
part = total_time / size
#
# read the second file to get the time-step
#
h5_filename = e1[1]
h5_data = osh5io.read_h5(h5_filename)
array_dims = h5_data.shape
#
# the array is transposed due to Fortran array ordering
nx = array_dims[0]
ny = array_dims[1]
#
#
time_step = h5_data.run_attrs['TIME'][0]
# h5_output = hdf_data()
# h5_output.shape = [total_time, nx]
print('nx=' + repr(nx))
print('ny=' + repr(ny))
print('time_step=' + repr(time_step))
print('total_time=' + repr(total_time))
# calculate the z-range
dz=h5_data.axis[1][1]-h5_data.axis[1][0]
nx_begin=int((zmin-h5_data.axis[1][0])/dz)
nx_end=int((zmax-h5_data.axis[1][0])/dz)
xaxis=h5_data.axes[1][nx_begin:nx_end]
#
taxis=osh5def.DataAxis(0, time_step * (total_time -1), total_time,
attrs={'NAME':'t', 'LONG_NAME':'time', 'UNITS':'1 / \omega_p'})
delta_k = 2*np.pi/(h5_data.axis[0].max-h5_data.axis[0].min)
nk = int(kmax/delta_k)
nz=nx_end-nx_begin+1
# here we allocate the history array
total_es = np.zeros((total_time,nk,nz))
total_em =np.zeros((total_time,nk,nz))
total_es = 0
total_em = 0
kaxis=osh5def.DataAxis(0, nk* delta_k, nk, attrs{'NAME':'k_{\perp}', 'LONG_NAME':'k_{\perp}', 'UNITS':osh5def.OSUnits('\omega_{0}/c')})
data_attrs_hfhi_es_hist = { 'UNITS': osh5def.OSUnits('a.u.'), 'NAME': 'ES modes history', 'LONG_NAME': 'hfhi_es_hist' }
data_attrs_hfhi_em_hist = { 'UNITS': osh5def.OSUnits('a.u.'), 'NAME': 'EM modes history', 'LONG_NAME': 'hfhi_em_hist' }
run_attrs = {'XMAX' : np.array( [ time_step * (total_time-1),kmax,zmax] ) ,
'XMIN' : np.array( [0, 0, zmin] ) }
i_count = 0
file_number = 0
for file_number in range(i_begin, i_end):
e1_filename = e1[file_number]
e2_filename = e2[file_number]
if (i_count % 10 == 0 and rank == 0):
print(e1_filename)
i_count = i_count+1
e1_data = osh5io.read_h5(e1_filename)
e2_data = osh5io.read_h5(e2_filename)
el,et = field_decompose((e1_data,e2_data),outquants=(l1,t2))
el_inv = np.abs(np.fft.fft(el,axis=0))
et_inv = np.abs(np.fft.fft(et,axis=0))
# temp = np.abs(np.fft.fft(e2_data,axis=0))
total_es[file_number,:,:]=temp[0:nk,nx_begin:nx_end]
total_em[file_number,:,:]=temp[0:nk,nx_begin:nx_end]
# temp = np.sum(s1_data, axis=0) / nx
# sum up the results to node 0 and output, 2 datasets, one for +
# component abd one for the - component
# first let's do the + root
comm.Reduce(e2_plus_output, total, op=MPI.SUM, root=0)
if rank == 0:
b=osh5def.H5Data(total, timestamp='x', data_attrs=data_attrs_eplus,
run_attrs=run_attrs, axes=[taxis,xaxis])
outFilename=outDir+'/'+'hfhi-es-data.h5'
osh5io.write_h5(b,filename=outFilename)
# now let's do the - component
comm.Reduce(total2, total, op=MPI.SUM, root=0)
if rank == 0:
b=osh5def.H5Data(total2, timestamp='x', data_attrs=data_attrs_eminus,
run_attrs=run_attrs, axes=[taxis,xaxis])
outFilename=outDir+'/'+'e2-minus.h5'
osh5io.write_h5(b,filename=outFilename)
# write_hdf(h5_output, outFilename)
print('Before barrier'+repr(rank))
comm.barrier()