-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathefm.py
149 lines (119 loc) · 3.58 KB
/
efm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# generated by wxGlade 0.9.6 on Thu Oct 29 22:41:10 2020
#
import math
import numpy as np
# Dimension
ly = 10.0 # m
fc = 35.0 # N/mm2
wd = 11.2 # kN/m2
span = np.array([10.0,10.0,10.0,10.0])
tslab = np.array([0.25,0.25,0.25,0.25])
tdrop = np.array([0.5,0.5,0.5,0.5,0.5])
htop = 3.2 #m
hbot = 3.2 #m
cx = np.array([0.5,0.6,0.6,0.6,0.5])
cy = np.array([0.5,0.6,0.6,0.6,0.5])
x = np.array([0.5,0.5,0.5,0.5,0.5])
k_slab = 7.89 * ly*tslab**3/12/span # 7.89 from pca
k_col = 4.20 * cy*cx**3/12* ( 1.0/hbot + 1.0/htop ) # 4.20 just assumption
c = 9.0*( 1.0-0.63*x/cx)*(x**3*cx/3) / ly/ (1.0-cy/ly)**3 # totional stiff
kec = 1.0/(1.0/k_col+1.0/c) # equivalent column
print("Kb =",k_slab)
print("Kcol=",k_col)
print("Ktos=",c)
print("Kec =",kec)
df = []
for i in range(0,len(kec)):
if i == 0 :
df.append( k_slab[i]/(k_slab[i]+kec[i]) )
elif i == len(kec)-1:
df.append( k_slab[i-1]/(k_slab[i-1]+kec[i]) )
else:
df.append( k_slab[i-1]/(k_slab[i-1]+k_slab[i]+kec[i]) )
df.append( k_slab[i]/(k_slab[i-1]+k_slab[i]+kec[i]) )
# cof assumption # 0.66 from PCA
cof = []
for i in range(0,len(span)):
cof.append( 0.66 )
cof.append( 0.66 )
fem = []
for i in range(0,len(span)): # 0.0993 from PCA
if i == 0 or i == len(span)-1:
fem.append( 0.0993*wd*ly * span[i]**2 )
fem.append( -0.0993*wd*ly * span[i]**2 )
# fem.append( 0.0993*(wd-2.0)*ly * span[i]**2 )
# fem.append( -0.0993*(wd-2.0)*ly * span[i]**2 )
else:
fem.append( 0.0993*wd*ly * span[i]**2 )
fem.append( -0.0993*wd*ly * span[i]**2 )
# EFM calculation
#df = [0.551, 0.355, 0.355, 0.355, 0.355, 0.355, 0.355, 0.551]
#cof = [0.578, 0.578, 0.578, 0.578, 0.578, 0.578, 0.578, 0.578]
#fem = [677.6, -677.6, 677.6, -677.6, 677.6, -677.6, 677.6, -677.6]
#print(len(df),len(cof),len(fem))
n = int(len(df)/2)+1
n2 = 2*n-2
# initial calculation
cal = []
fem2 = []
dist = []
co = []
for i in range(0,n):
if i == 0:
dist.append ( -df[2*i]*fem[2*i] )
elif i == n-1:
dist.append ( -df[2*i-1]*fem[2*i-1] )
else:
dist.append ( -df[2*i-1]*(fem[2*i-1]+fem[2*i] ) )
dist.append ( -df[2*i]*(fem[2*i-1]+fem[2*i]) )
for i in range(0,n-1):
co.append( cof[2*i+1] * dist[2*i+1] )
co.append( cof[2*i] * dist[2*i] )
cal = np.array(np.array(dist))
cal = np.vstack((cal,np.array(co)))
"""
cal.append(dist)
cal.append(co)
"""
# shooting
for kk in range(0,9):
for i in range(0,n):
if i == 0:
dist[i] = -df[2*i]*co[2*i]
elif i == n-1:
dist[2*i-1] = -df[2*i-1]*co[2*i-1]
else:
dist[2*i-1] = -df[2*i-1]*(co[2*i-1]+co[2*i])
dist[2*i] = -df[2*i]*(co[2*i-1]+co[2*i])
for i in range(0,n-1):
co[2*i] = cof[2*i+1] * dist[2*i+1]
co[2*i+1] = cof[2*i] * dist[2*i]
cal = np.vstack((cal,np.array(dist)))
cal = np.vstack((cal,np.array(co)))
md = []
md = np.sum(cal, axis=0)+np.array(fem)
vl = []
ve = []
for i in range(0,len(span)):
ve.append( -( md[2*i] + md[2*i+1] ) / span[i] )
ve.append( -( md[2*i] + md[2*i+1] ) / span[i] )
vl.append( -wd*ly*span[i]/2.0 )
vl.append( wd*ly*span[i]/2.0 )
v = np.array(ve)+np.array(vl)
# output
np.set_printoptions(precision=3, suppress=True )
print("Calculation of Equivalent frame")
print("DF =",np.array(df))
print("COF =",np.array(cof))
print("FEM =",np.array(fem))
np.set_printoptions(precision=1, suppress=True )
print("n=",n,"n2=",n2)
print("Sheet=")
print(cal)
print("M=",md)
print("Ve=",np.array(ve))
print("Vl=",np.array(vl))
print("V =",v)