-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path기말프로젝트.R
644 lines (536 loc) · 31.4 KB
/
기말프로젝트.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
library(dplyr)
library(tidyverse)
library(readxl)
library(RColorBrewer)
#전처리1 - 필요한 부분만 남기기
Crime <- read_excel("범죄사건처리기간2021.xlsx")
Crime <- Crime[c(4:9,11,12,14:17,20,21,29,30,34,36,39),]
colnames(Crime) <- c("Field", "crime", "Total", "D10", "D20", "M1", "M2", "M3", "M6", "Long")
#전처리2 - 숫자 정수화
Crime$Total <- as.integer(Crime$Total)
Crime$D10 <- as.integer(Crime$D10)
Crime$D20 <- as.integer(Crime$D20)
Crime$M1 <- as.integer(Crime$M1)
Crime$M2 <- as.integer(Crime$M2)
Crime$M3 <- as.integer(Crime$M3)
Crime$M6 <- as.integer(Crime$M6)
Crime$Long <- as.integer(Crime$Long)
#전처리3 - 단기, 장기로 구분
Crime <- Crime %>% mutate(Short_Term = D10+D20+M1, Long_Term = Total - Short_Term) %>% select(Field, crime, Total, Short_Term, Long_Term)
#전처리4 - Field, Crime 이름 수정
Crime$crime[2] <- c("살인미수")
Crime$Field[4:6] <- c("성범죄")
Crime$Field[7] <- c("방화범죄")
Crime$crime[8] <- c("절도")
Crime$Field[9:12] <- c("신체폭력")
Crime$Field[13:14] <- c("재산폭력")
Crime$crime[18] <- c("마약범죄")
Crime$crime[19] <- c("교통범죄")
Crime
#The posterior of single biomial distribution for 살인기수
#1. Uniform prior
n <- 322; y <- 190; a <- 1; b <- 1
grid <- seq(0.001, 0.999, by=0.001)
prior1 <- dbeta(grid, a, b); prior1 <- prior1/sum(prior1)
prob <- dbinom(y, n, grid); prob <- prob/sum(prob)
posterior <- prior1*prob/sum(prior1*prob)
plot(grid, posterior*length(grid), type='l', lwd=2, col="red", xlab="theta", ylab="Density", ylim=c(0, 15))
lines(grid, prior1*length(grid), col="blue")
lines(grid, prob*length(grid), col="black", lty=2)
legend("topright", c("Likelihood", "Prior", "Posterior"), lwd=c(1,1,2), col=c("black","blue","red"))
#posterior mean, mode
(a+y)/(a+b+n); (a+y-1)/(a+b+n-2)
qbeta(0.025, 191, 133); qbeta(0.975, 191, 133)
#2. Hadlane's prior
n <- 322; y <- 190; a <- 0; b <- 0
grid <- seq(0.001, 0.999, by=0.001)
prior1 <- (1/grid)*(1/(1-grid)); prior1 <- prior1/sum(prior1)
prob <- dbinom(y, n, grid); prob <- prob/sum(prob)
posterior <- prior1*prob/sum(prior1*prob)
plot(grid, posterior*length(grid), type='l', lwd=2, col="red", xlab="theta", ylab="Density", ylim=c(0, 15))
lines(grid, prior1*length(grid), col="blue")
lines(grid, prob*length(grid), col="black", lty=2)
legend("topright", c("Likelihood", "Prior", "Posterior"), lwd=c(1,1,2), col=c("black","blue","red"))
#posterior mean, mode
(a+y)/(a+b+n); (a+y-1)/(a+b+n-2)
qbeta(0.025, 190, 132); qbeta(0.975, 190, 132)
#3. 2 conjugate priors of Positive and negative
n <- 322; y <- 190; a_p <- 18; b_p <- 7; a_n <- 5; b_n<-45
grid <- seq(0.001, 0.999, by=0.001)
prior1 <- dbeta(grid, a_p, b_p); prior1 <- prior1/sum(prior1)
prior2 <- dbeta(grid, a_n, b_n); prior2 <- prior2/sum(prior2)
prob <- dbinom(y, n, grid); prob <- prob/sum(prob)
posterior1 <- prior1*prob/sum(prior1*prob)
posterior2 <- prior2*prob/sum(prior2*prob)
plot(grid, prob*length(grid), type='l', lty=2, col="black", xlab="theta", ylab="Density", ylim=c(0, 16))
lines(grid, prior1*length(grid), col="blue")
lines(grid, posterior1*length(grid), col="red", lwd=2)
legend("topright", c("Likelihood", "Prior(P)", "Posterior"), lwd=c(1,1,2), col=c("black","blue","red"))
plot(grid, prob*length(grid), type='l', lty=2, col="black", xlab="theta", ylab="Density", ylim=c(0, 16))
lines(grid, prior2*length(grid), col="forestgreen")
lines(grid, posterior2*length(grid), col="red", lwd=2)
legend("topright", c("Likelihood", "Prior(N)", "Posterior"), lwd=c(1,1,2), col=c("black","forestgreen","red"))
#posterior mean, mode
(a_p+y)/(a_p+b_p+n); (a_p+y-1)/(a_p+b_p+n-2)
#posterior mean, mode
(a_n+y)/(a_n+b_n+n); (a_n+y-1)/(a_n+b_n+n-2)
qbeta(0.025, 195,177); qbeta(0.975, 195,177)
##각 죄목들의 uniform prior에 따른 posterior들(시간이 너무 오래 걸리고 그래프 비정상적적)
N <- Crime$Total
S <- Crime$Short_Term
?mapply
x <- seq(0, 1, by=0.000001)
df_sep <- mapply(function(a, b, x) dbeta(x, a, b), S+1, N-S+1, MoreArgs = list(x = x)) %>%
as.data.frame() %>%
setNames(Crime$crime) %>%
cbind(x) %>%
pivot_longer(cols = !x, names_to = "crime", values_to = "P")
head(df_sep,20)
labs1 <- c('Other Groups', '살인기수')
plot_sep <- ggplot(data = df_sep) +
geom_line(aes(x = x, y = P/N, color = (crime=='살인기수'), group = crime)) +
labs(x = 'Treatment effect', y = '', title = 'Separate model', color = '') +
scale_y_continuous(breaks = NULL) +
scale_color_manual(values = c('blue','red'), labels = labs1) +
theme(legend.background = element_blank(), legend.position = c(0.8,0.9))
df_sep[100:120,]
warnings()
plot_sep
#n이 적은 강력범죄만 일단 posterior들을 그려본다
library(ggplot2)
N <- Crime$Total[c(1:5,7)]
S <- Crime$Short_Term[c(1:5,7)]
x <- seq(0, 1, by=0.00001)
df_sep <- mapply(function(a, b, x) dbeta(x, a, b), S+1, N-S+1, MoreArgs = list(x = x)) %>%
as.data.frame() %>%
setNames(Crime$crime[c(1:5,7)]) %>%
cbind(x) %>%
pivot_longer(cols = !x, names_to = "crime", values_to = "P")
head(df_sep,20)
plot_sep <- ggplot(data = df_sep) +
geom_line(aes(x = x, y = P/N, color = crime, group = crime)) +
labs(x = 'Short Term Percengate', y = '', title = 'Separate model', color = '') +
scale_y_continuous(breaks = NULL) +
theme(legend.background = element_blank(), legend.position = c(0.9,0.8))
plot_sep
#Field로 나눠서
N <- Crime$Total[c(1:5,7)]
S <- Crime$Short_Term[c(1:5,7)]
x <- seq(0, 1, by=0.00001)
df_sep <- mapply(function(a, b, x) dbeta(x, a, b), S+1, N-S+1, MoreArgs = list(x = x)) %>%
as.data.frame() %>%
setNames(Crime$crime[c(1:5,7)]) %>%
cbind(x) %>%
pivot_longer(cols = !x, names_to = "crime", values_to = "P") %>% mutate(Field = ifelse(crime=="방화", "방화범죄", ifelse(crime=="강간" | crime=="유사강간", "성범죄", "강력범죄")))
head(df_sep,20)
plot_sep <- ggplot(data = df_sep) +
geom_line(aes(x = x, y = P/N, color = Field, group = crime)) +
labs(x = 'Short Term Percengate', y = '', title = 'Separate model', color = '') +
scale_y_continuous(breaks = NULL) +
theme(legend.background = element_blank(), legend.position = c(0.9,0.8))
plot_sep
Crime
#mean,variance of posterior
#Beta(1,1) prior
a<-1; b<-1; N <- Crime$Total; S <- Crime$Short_Term
Means <- (a+S)/(a+b+N)
Variances <- Means*(1-Means)/(a+b+N+1)
post_mean_var <- cbind(Crime$Field, Crime$crime, Means, Variances)
post_mean_var <- cbind(Means, Variances)
#x축 = 단기 검거 비율, y축 = 사후 분산
post_mean_var %>% as.data.frame() %>% mutate(crime = Crime$crime, Field = Crime$Field, N = Crime$Total) %>% ggplot(aes(x=Means, y=Variances)) + geom_point(aes(col=Field, size=N)) + scale_color_brewer(palette = "Paired")
#x축 = 범죄수, y축 = 단기검거비율
post_mean_var %>% as.data.frame() %>% mutate(crime = Crime$crime, Field = Crime$Field, N = Crime$Total) %>% ggplot(aes(x=N, y=Means)) + geom_point(aes(col=Field, size=3)) + scale_color_brewer(palette = "Paired")
#log10 scale(현재까지 제일 깔끔)
post_mean_var %>% as.data.frame() %>% mutate(crime = Crime$crime, Field = Crime$Field, N = Crime$Total) %>% ggplot(aes(x=log10(N), y=Means)) + geom_point(aes(col=Field, size=7)) + scale_color_brewer(palette = "Paired") + geom_text(aes(label=crime), nudge_y = 0.03)
##Field별 joint posterior(1-강력범죄)(Unif prior)
Field1 <-Crime %>% filter(Field == "강력범죄")
Np <- Field1 %>% select(Total) %>% sum()
Sp <- Field1 %>% select(Short_Term) %>% sum()
a <- 1; b <- 1
grid <- seq(0, 1, by=0.0001)
prob1 <- dbinom(Field1$Short_Term[1], Field1$Total[1], grid); prob1 <- prob1/sum(prob1)
prob2 <- dbinom(Field1$Short_Term[2], Field1$Total[2], grid); prob2 <- prob2/sum(prob2)
prob3 <- dbinom(Field1$Short_Term[3], Field1$Total[3], grid); prob3 <- prob3/sum(prob3)
posterior1 <- prob1*prob2*prob3/sum(prob1*prob2*prob3)
plot(grid, posterior1*length(grid), type='l', lwd=2, col="red", xlab="theta", ylab="Density", xlim=c(0.4, 0.8), main="강력범죄 Joint Posterior")
lines(grid, prob1*length(grid), col="dodger blue")
lines(grid, prob2*length(grid), col="sky blue")
lines(grid, prob3*length(grid), col="blue")
lines(grid, dunif(grid), col="tan")
legend("topright", c("Unif Prior","살인기수", "살인미수", "강도","강력 Post"), lwd=c(1,1,1,1,2), col=c("tan","dodger blue","sky blue","blue","red"))
#posterior mean, mode
(a+Sp)/(a+b+Np); (a+Sp-1)/(a+b+Np-2)
qbeta(0.025, 867, 644)
Crime
##Field별 joint posterior(1-강력범죄)(positive beta prior)
a <- 71; b <- 31
grid <- seq(0, 1, by=0.0001)
prior <- dbeta(grid, a, b); prior<-prior/sum(prior)
prob1 <- dbinom(Field1$Short_Term[1], Field1$Total[1], grid); prob1 <- prob1/sum(prob1); prob1 <- prior*prob1/sum(prior*prob1)
prob2 <- dbinom(Field1$Short_Term[2], Field1$Total[2], grid); prob2 <- prob2/sum(prob2); prob2 <- prior*prob2/sum(prior*prob2)
prob3 <- dbinom(Field1$Short_Term[3], Field1$Total[3], grid); prob3 <- prob3/sum(prob3); prob3 <- prior*prob3/sum(prior*prob3)
posterior1.p <- prob1*prob2*prob3*(prior^3)/sum(prob1*prob2*prob3*(prior^3))
plot(grid, posterior1.p*length(grid), type='l', lwd=2, col="red", xlab="theta", ylab="Density",xlim=c(0.4, 0.8), ylim=c(0,40),main="강력범죄 Joint Posterior")
lines(grid, prob1*length(grid), col="dodger blue")
lines(grid, prob2*length(grid), col="sky blue")
lines(grid, prob3*length(grid), col="blue")
lines(grid, prior*length(grid), col="tan")
legend("topright", c("Prior(+)","살인기수", "살인미수", "강도","강력 Post"), lwd=c(1,1,1,1,2), col=c("tan","dodger blue","sky blue","blue","red"))
#posterior mean, mode
(a+Sp)/(a+b+Np); (a+Sp-1)/(a+b+Np-2)
##Field별 joint posterior(1-강력범죄)(negative beta prior)
a <- 31; b <- 71
grid <- seq(0, 1, by=0.0001)
prior <- dbeta(grid, a, b); prior<-prior/sum(prior)
prob1 <- dbinom(Field1$Short_Term[1], Field1$Total[1], grid); prob1 <- prob1/sum(prob1); prob1 <- prior*prob1/sum(prior*prob1)
prob2 <- dbinom(Field1$Short_Term[2], Field1$Total[2], grid); prob2 <- prob2/sum(prob2); prob2 <- prior*prob2/sum(prior*prob2)
prob3 <- dbinom(Field1$Short_Term[3], Field1$Total[3], grid); prob3 <- prob3/sum(prob3); prob3 <- prior*prob3/sum(prior*prob3)
posterior1.n <- prob1*prob2*prob3*(prior^3)/sum(prob1*prob2*prob3*(prior^3))
plot(grid, posterior1.n*length(grid), type='l', lwd=2, col="red", xlab="theta", ylab="Density",xlim=c(0.2, 0.7), main="강력범죄 Joint Posterior")
lines(grid, prob1*length(grid), col="dodger blue")
lines(grid, prob2*length(grid), col="sky blue")
lines(grid, prob3*length(grid), col="blue")
lines(grid, prior*length(grid), col="tan")
legend("topright", c("Prior(-)","살인기수", "살인미수", "강도","강력 Post"), lwd=c(1,1,1,1,2), col=c("tan","dodger blue","sky blue","blue","red"))
#posterior mean, mode
(a+Sp)/(a+b+Np); (a+Sp-1)/(a+b+Np-2)
##Field별 joint posterior(2-성범죄)(Unif Prior)
Field2 <-Crime %>% filter(Field == "성범죄")
Np <- Field2 %>% select(Total) %>% sum()
Sp <- Field2 %>% select(Short_Term) %>% sum()
a <- 1; b <- 1
grid <- seq(0, 1, by=0.0001)
prob1 <- dbinom(Field2$Short_Term[1], Field2$Total[1], grid); prob1 <- prob1/sum(prob1)
prob2 <- dbinom(Field2$Short_Term[2], Field2$Total[2], grid); prob2 <- prob2/sum(prob2)
prob3 <- dbinom(Field2$Short_Term[3], Field2$Total[3], grid); prob3 <- prob3/sum(prob3)
posterior2 <- prob1*prob2*prob3/sum(prob1*prob2*prob3)
plot(grid, posterior2*length(grid), type='l', lwd=2, col="red", xlab="theta", ylab="Density", xlim=c(0.05,0.3), main="성범죄 Joint Posterior")
lines(grid, prob1*length(grid), col="dodger blue")
lines(grid, prob2*length(grid), col="sky blue")
lines(grid, prob3*length(grid), col="blue")
legend("topright", c("강간", "유사강간", "강제추행","성범죄 Post"), lwd=c(1,1,1,2), col=c("dodger blue","sky blue","blue","red"))
##Field별 joint posterior(2-성범죄)(Positive Prior)
a <- 71; b <- 31
grid <- seq(0, 1, by=0.0001)
prior <- dbeta(grid, a, b); prior<-prior/sum(prior)
prob1 <- dbinom(Field2$Short_Term[1], Field2$Total[1], grid); prob1 <- prob1/sum(prob1)
prob2 <- dbinom(Field2$Short_Term[2], Field2$Total[2], grid); prob2 <- prob2/sum(prob2)
prob3 <- dbinom(Field2$Short_Term[3], Field2$Total[3], grid); prob3 <- prob3/sum(prob3)
posterior2.p <- prob1*prob2*prob3*(prior^3)/sum(prob1*prob2*prob3*(prior^3))
plot(grid, posterior2.p*length(grid), type='l', lwd=2, col="red", xlab="theta", ylab="Density", xlim=c(0.1,0.7), main="성범죄 Joint Posterior")
lines(grid, prob1*length(grid), col="dodger blue")
lines(grid, prob2*length(grid), col="sky blue")
lines(grid, prob3*length(grid), col="blue")
lines(grid, prior*length(grid), col="tan")
legend("topright", c("Prior(+)","강간", "유사강간", "강제추행","성범죄 Post"), lwd=c(1,1,1,1,2), col=c("tan","dodger blue","sky blue","blue","red"))
#posterior mean, mode
(a+Sp)/(a+b+Np); (a+Sp-1)/(a+b+Np-2)
##Field별 joint posterior(2-성범죄)(Negative Prior)
a <- 31; b <- 71
grid <- seq(0, 1, by=0.0001)
prior <- dbeta(grid, a, b); prior<-prior/sum(prior)
prob1 <- dbinom(Field2$Short_Term[1], Field2$Total[1], grid); prob1 <- prob1/sum(prob1)
prob2 <- dbinom(Field2$Short_Term[2], Field2$Total[2], grid); prob2 <- prob2/sum(prob2)
prob3 <- dbinom(Field2$Short_Term[3], Field2$Total[3], grid); prob3 <- prob3/sum(prob3)
posterior2.n <- prob1*prob2*prob3*(prior^3)/sum(prob1*prob2*prob3*(prior^3))
plot(grid, posterior2.n*length(grid), type='l', lwd=2, col="red", xlab="theta", ylab="Density", xlim=c(0.1,0.7), main="성범죄 Joint Posterior")
lines(grid, prob1*length(grid), col="dodger blue")
lines(grid, prob2*length(grid), col="sky blue")
lines(grid, prob3*length(grid), col="blue")
lines(grid, prior*length(grid), col="tan")
legend("topright", c("Prior(-)","강간", "유사강간", "강제추행","성범죄 Post"), lwd=c(1,1,1,1,2), col=c("tan","dodger blue","sky blue","blue","red"))
#posterior mean, mode
(a+Sp)/(a+b+Np); (a+Sp-1)/(a+b+Np-2)
##Field별 joint posterior(3-신체폭력범죄)(Unif Prior)
Field3 <-Crime %>% filter(Field == "신체폭력")
Np <- Field3 %>% select(Total) %>% sum()
Sp <- Field3 %>% select(Short_Term) %>% sum()
a <- 1; b <- 1
grid <- seq(0, 1, by=0.0001)
prob1 <- dbinom(Field3$Short_Term[1], Field3$Total[1], grid); prob1 <- prob1/sum(prob1)
prob2 <- dbinom(Field3$Short_Term[2], Field3$Total[2], grid); prob2 <- prob2/sum(prob2)
prob3 <- dbinom(Field3$Short_Term[3], Field3$Total[3], grid); prob3 <- prob3/sum(prob3)
prob4 <- dbinom(Field3$Short_Term[4], Field3$Total[4], grid); prob4 <- prob4/sum(prob4)
posterior3 <- prob1*prob2*prob3*prob4/sum(prob1*prob2*prob3*prob4)
plot(grid, posterior3*length(grid), type='l', lwd=2, col="red", xlab="theta", ylab="Density", xlim=c(0.25, 0.53), main="신체폭력 Joint Posterior")
lines(grid, prob1*length(grid), col="dodger blue")
lines(grid, prob2*length(grid), col="sky blue")
lines(grid, prob3*length(grid), col="blue")
lines(grid, prob4*length(grid), col="purple")
legend("topright", c("상해", "폭행", "체포/감금","협박","성범죄 Post"), lwd=c(1,1,1,1,2), col=c("dodger blue","sky blue","blue","purple","red"))
#posterior mean, mode
(a+Sp)/(a+b+Np); (a+Sp-1)/(a+b+Np-2)
##Field별 joint posterior(3-신체폭력범죄)(Positive Prior)
a <- 71; b <- 31
grid <- seq(0, 1, by=0.0001)
prior <- dbeta(grid, a, b); prior<-prior/sum(prior)
prob1 <- dbinom(Field3$Short_Term[1], Field3$Total[1], grid); prob1 <- prob1/sum(prob1); prob1 <- prior*prob1/sum(prob1*prior)
prob2 <- dbinom(Field3$Short_Term[2], Field3$Total[2], grid); prob2 <- prob2/sum(prob2); prob2 <- prior*prob2/sum(prob2*prior)
prob3 <- dbinom(Field3$Short_Term[3], Field3$Total[3], grid); prob3 <- prob3/sum(prob3); prob3 <- prior*prob3/sum(prob3*prior)
prob4 <- dbinom(Field3$Short_Term[4], Field3$Total[4], grid); prob4 <- prob4/sum(prob4); prob4 <- prior*prob4/sum(prob4*prior)
posterior3.p <- prob1*prob2*prob3*prob4*(prior^4)/sum(prob1*prob2*prob3*prob4*(prior^4))
plot(grid, posterior3.p*length(grid), type='l', lwd=2, col="red", xlab="theta", ylab="Density", xlim=c(0.25, 0.53), main="신체폭력 Joint Posterior")
lines(grid, prob1*length(grid), col="dodger blue")
lines(grid, prob2*length(grid), col="sky blue")
lines(grid, prob3*length(grid), col="blue")
lines(grid, prob4*length(grid), col="purple")
lines(grid, prior*length(grid), col="tan")
legend("topright", c("Prior(+)","상해", "폭행", "체포/감금","협박","폭력범죄 Post"), lwd=c(1,1,1,1,1,2), col=c("tan","dodger blue","sky blue","blue","purple","red"))
#posterior mean, mode
(a+Sp)/(a+b+Np); (a+Sp-1)/(a+b+Np-2)
m <- (a+Sp)/(a+b+Np)
m*(1-m)/(a+b+Np+1)
##Field별 joint posterior(3-신체폭력범죄)(Negative Prior)
a <- 31; b <- 71
grid <- seq(0, 1, by=0.0001)
prior <- dbeta(grid, a, b); prior<-prior/sum(prior)
prob1 <- dbinom(Field3$Short_Term[1], Field3$Total[1], grid); prob1 <- prob1/sum(prob1); prob1 <- prior*prob1/sum(prob1*prior)
prob2 <- dbinom(Field3$Short_Term[2], Field3$Total[2], grid); prob2 <- prob2/sum(prob2); prob2 <- prior*prob2/sum(prob2*prior)
prob3 <- dbinom(Field3$Short_Term[3], Field3$Total[3], grid); prob3 <- prob3/sum(prob3); prob3 <- prior*prob3/sum(prob3*prior)
prob4 <- dbinom(Field3$Short_Term[4], Field3$Total[4], grid); prob4 <- prob4/sum(prob4); prob4 <- prior*prob4/sum(prob4*prior)
posterior3.n <- prob1*prob2*prob3*prob4*(prior^4)/sum(prob1*prob2*prob3*prob4*(prior^4))
plot(grid, posterior3.n*length(grid), type='l', lwd=2, col="red", xlab="theta", ylab="Density", xlim=c(0.25, 0.53), main="신체폭력 Joint Posterior")
lines(grid, prob1*length(grid), col="dodger blue")
lines(grid, prob2*length(grid), col="sky blue")
lines(grid, prob3*length(grid), col="blue")
lines(grid, prob4*length(grid), col="purple")
lines(grid, prior*length(grid), col="orange")
legend("topright", c("Prior(-)","상해", "폭행", "체포/감금","협박","폭력범죄 Post"), lwd=c(1,1,1,1,1,2), col=c("orange","dodger blue","sky blue","blue","purple","red"))
#posterior mean, mode
(a+Sp)/(a+b+Np); (a+Sp-1)/(a+b+Np-2)
m <- (a+Sp)/(a+b+Np)
m*(1-m)/(a+b+Np+1)
##Field별 joint posterior(4-재산범죄)
Field4 <-Crime %>% filter(Field == "재산폭력")
Np <- Field4 %>% select(Total) %>% sum()
Sp <- Field4 %>% select(Short_Term) %>% sum()
a <- 1; b <- 1
grid <- seq(0, 1, by=0.0001)
prob1 <- dbinom(Field4$Short_Term[1], Field4$Total[1], grid); prob1 <- prob1/sum(prob1)
prob2 <- dbinom(Field4$Short_Term[2], Field4$Total[2], grid); prob2 <- prob2/sum(prob2)
posterior4 <- dbeta(grid, Sp+1, Np-Sp+1)
Crime
plot(grid, posterior4, type='l', lwd=2, col="red", xlab="theta", ylab="Density", xlim=c(0.1, 0.5),main="재산범죄 Joint Posterior")
lines(grid, prob1*length(grid), col="dodger blue")
lines(grid, prob2*length(grid), col="sky blue")
legend("topright", c("공갈", "손괴" ,"재산범죄 Post"), lwd=c(1,1,2), col=c("dodger blue","sky blue","red"))
#posterior mean, mode
(a+Sp)/(a+b+Np); (a+Sp-1)/(a+b+Np-2)
##Field별 joint posterior(4-재산범죄)(Positive Prior)
a <- 71; b <- 31
grid <- seq(0, 1, by=0.0001)
prior <- dbeta(grid, a, b); prior<-prior/sum(prior)
prob1 <- dbinom(Field4$Short_Term[1], Field4$Total[1], grid); prob1 <- prob1/sum(prob1); prob1 <- prior*prob1/sum(prob1*prior)
prob2 <- dbinom(Field4$Short_Term[2], Field4$Total[2], grid); prob2 <- prob2/sum(prob2); prob2 <- prior*prob2/sum(prob2*prior)
posterior4.p <- dbeta(grid, Sp+2*a-1, Np-Sp+2*b-1)
plot(grid, posterior4.p, type='l', lwd=2, col="red", xlab="theta", ylab="Density", xlim=c(0.15, 0.73), main="재산범죄 Joint Posterior")
lines(grid, prob1*length(grid), col="dodger blue")
lines(grid, prob2*length(grid), col="sky blue")
lines(grid, prior*length(grid), col="tan")
legend("topright", c("Prior(+)","공갈","손괴","재산범죄 Post"), lwd=c(1,1,1,2), col=c("tan","dodger blue","sky blue","red"))
##Field별 joint posterior(4-재산범죄)(Negative Prior)
a <- 31; b <- 71
grid <- seq(0, 1, by=0.0001)
prior <- dbeta(grid, a, b); prior<-prior/sum(prior)
prob1 <- dbinom(Field4$Short_Term[1], Field4$Total[1], grid); prob1 <- prob1/sum(prob1); prob1 <- prior*prob1/sum(prob1*prior)
prob2 <- dbinom(Field4$Short_Term[2], Field4$Total[2], grid); prob2 <- prob2/sum(prob2); prob2 <- prior*prob2/sum(prob2*prior)
posterior4.n <- dbeta(grid, Sp+2*a-1, Np-Sp+2*b-1)
plot(grid, posterior4.n, type='l', lwd=2, col="red", xlab="theta", ylab="Density", xlim=c(0.15, 0.73), main="재산범죄 Joint Posterior")
lines(grid, prob1*length(grid), col="dodger blue")
lines(grid, prob2*length(grid), col="sky blue")
lines(grid, prior*length(grid), col="tan")
legend("topright", c("Prior(-)","공갈","손괴","재산범죄 Post"), lwd=c(1,1,1,2), col=c("tan","dodger blue","sky blue","red"))
Crime
##Field별 joint posterior(5-지능범죄)(Unif Prior)
Field5 <-Crime %>% filter(Field == "지능범죄")
Np <- Field5 %>% select(Total) %>% sum()
Sp <- Field5 %>% select(Short_Term) %>% sum()
a <- 1; b <- 1
grid <- seq(0, 1, by=0.0001)
prob1 <- dbinom(Field5$Short_Term[1], Field5$Total[1], grid); prob1 <- prob1/sum(prob1)
prob2 <- dbinom(Field5$Short_Term[2], Field5$Total[2], grid); prob2 <- prob2/sum(prob2)
posterior5 <- dbeta(grid, Sp+1, Np-Sp+1)
plot(grid, posterior5, type='l', lwd=2, col="red", xlab="theta", ylab="Density", xlim=c(0.145, 0.285),main="지능범죄 Joint Posterior")
lines(grid, prob1*length(grid), col="dodger blue")
lines(grid, prob2*length(grid), col="sky blue")
legend("topright", c("사기", "횡령" ,"지능범죄 Post"), lwd=c(1,1,2), col=c("dodger blue","sky blue","red"))
#posterior mean, mode
(a+Sp)/(a+b+Np); (a+Sp-1)/(a+b+Np-2)
##Field별 joint posterior(5-지능범죄)(Positive Prior)
a <- 71; b <- 31
grid <- seq(0, 1, by=0.0001)
prob1 <- dbinom(Field5$Short_Term[1], Field5$Total[1], grid); prob1 <- prob1/sum(prob1)
prob2 <- dbinom(Field5$Short_Term[2], Field5$Total[2], grid); prob2 <- prob2/sum(prob2)
posterior5.p <- dbeta(grid, Sp+2*a-1, Np-Sp+2*b-1)
plot(grid, posterior5.p, type='l', lwd=2, col="red", xlab="theta", ylab="Density", xlim=c(0.145, 0.285),main="지능범죄 Joint Posterior")
lines(grid, prob1*length(grid), col="dodger blue")
lines(grid, prob2*length(grid), col="sky blue")
legend("topright", c("Prior(+)","사기", "횡령" ,"지능범죄 Post"), lwd=c(1,1,1,2), col=c("tan","dodger blue","sky blue","red"))
##Field별 joint posterior(5-지능범죄)(Negative Prior)
a <- 31; b <- 71
grid <- seq(0, 1, by=0.0001)
prob1 <- dbinom(Field5$Short_Term[1], Field5$Total[1], grid); prob1 <- prob1/sum(prob1)
prob2 <- dbinom(Field5$Short_Term[2], Field5$Total[2], grid); prob2 <- prob2/sum(prob2)
posterior5.n <- dbeta(grid, Sp+2*a-1, Np-Sp+2*b-1)
plot(grid, posterior5.n, type='l', lwd=2, col="red", xlab="theta", ylab="Density", xlim=c(0.145, 0.285),main="지능범죄 Joint Posterior")
lines(grid, prob1*length(grid), col="dodger blue")
lines(grid, prob2*length(grid), col="sky blue")
legend("topright", c("Prior(-)","사기", "횡령" ,"지능범죄 Post"), lwd=c(1,1,1,2), col=c("tan","dodger blue","sky blue","red"))
#5개 field joint post
plot(grid, posterior5, type='l', lwd=2, col="red", xlab="theta", ylab="Density", xlim=c(0.16,0.61),main="5 plots of Field Joint Posterior")
lines(grid, posterior1*length(grid), col="orange")
lines(grid, posterior2*length(grid), col="forestgreen")
lines(grid, posterior3*length(grid), col="blue")
lines(grid, posterior4, col="purple")
legend("topright", c("지능범죄","강력범죄", "성범죄" ,"폭력범죄", "재산범죄"), lwd=c(1,1,1,1,1), col=c("red","orange","forestgreen","blue","purple"))
#10개 field joint post
ap<-71; bp<-31; an<-31; bn<-71
Field6 <-Crime %>% filter(Field == "방화범죄")
Np <- Field6 %>% select(Total) %>% sum()
Sp <- Field6 %>% select(Short_Term) %>% sum()
posterior6 <- dbeta(grid, Sp+1, Np-Sp+1)
posterior6.p <- dbeta(grid, Sp+ap, Np-Sp+bp)
posterior6.n <- dbeta(grid, Sp+an, Np-Sp+bn)
Field7 <-Crime %>% filter(Field == "절도범죄")
Np <- Field7 %>% select(Total) %>% sum()
Sp <- Field7 %>% select(Short_Term) %>% sum()
posterior7 <- dbeta(grid, Sp+1, Np-Sp+1)
posterior7.p <- dbeta(grid, Sp+ap, Np-Sp+bp)
posterior7.n <- dbeta(grid, Sp+an, Np-Sp+bn)
Field8 <-Crime %>% filter(Field == "풍속범죄")
Np <- Field8 %>% select(Total) %>% sum()
Sp <- Field8 %>% select(Short_Term) %>% sum()
posterior8 <- dbeta(grid, Sp+1, Np-Sp+1)
posterior8.p <- dbeta(grid, Sp+ap, Np-Sp+bp)
posterior8.n <- dbeta(grid, Sp+an, Np-Sp+bn)
Field9 <-Crime %>% filter(Field == "마약범죄")
Np <- Field9 %>% select(Total) %>% sum()
Sp <- Field9 %>% select(Short_Term) %>% sum()
posterior9 <- dbeta(grid, Sp+1, Np-Sp+1)
posterior9.p <- dbeta(grid, Sp+ap, Np-Sp+bp)
posterior9.n <- dbeta(grid, Sp+an, Np-Sp+bn)
Field10 <-Crime %>% filter(Field == "교통범죄")
Np <- Field10 %>% select(Total) %>% sum()
Sp <- Field10 %>% select(Short_Term) %>% sum()
posterior10 <- dbeta(grid, Sp+1, Np-Sp+1)
posterior10.p <- dbeta(grid, Sp+ap, Np-Sp+bp)
posterior10.n <- dbeta(grid, Sp+an, Np-Sp+bn)
plot(grid, posterior10, type='l', lwd=2, col="red", xlab="theta", ylab="Density", xlim=c(0.16, 0.75), ylim=c(0,600),main="10 plots of Field Joint Posterior")
lines(grid, posterior1*length(grid), col="coral", lwd=2)
lines(grid, posterior2*length(grid), col="tan", lwd=2)
lines(grid, posterior3*length(grid), col="green", lwd=2)
lines(grid, posterior4, col="forestgreen", lwd=2)
lines(grid, posterior5, col="skyblue", lwd=2)
lines(grid, posterior6, col="blue", lwd=2)
lines(grid, posterior7, col="purple", lwd=2)
lines(grid, posterior8, col="gray", lwd=2)
lines(grid, posterior9, col="black", lwd=2)
legend("topright", c("강력범죄","성범죄","폭력범죄","재산범죄","지능범죄","방화범죄","절도범죄","도박범죄","마약범죄",
"교통범죄"), lwd=c(rep(1,10)), col=c("coral", "tan","green","forestgreen","skyblue","blue","purple","gray","magenta","red"))
#p
prior.p <- dbeta(grid, ap, bp); prior.p<- prior.p/sum(prior.p)
plot(grid, posterior10, type='l', lwd=2, col="red", xlab="theta", ylab="Density", xlim=c(0.16, 0.75), ylim=c(0,600),main="10 plots of Field Joint Posterior")
lines(grid, posterior1.p*length(grid), col="coral", lwd=2)
lines(grid, posterior2.p*length(grid), col="green", lwd=2)
lines(grid, posterior3.p*length(grid), col="forestgreen", lwd=2)
lines(grid, posterior4.p, col="skyblue", lwd=2)
lines(grid, posterior5.p, col="blue", lwd=2)
lines(grid, posterior6.p, col="purple", lwd=2)
lines(grid, posterior7.p, col="gray", lwd=2)
lines(grid, posterior8.p, col="magenta", lwd=2)
lines(grid, posterior9.p, col="black", lwd=2)
lines(grid, prior.p*length(grid), col="tan", lwd=2)
legend("topright", c("강력범죄","성범죄","폭력범죄","재산범죄","지능범죄","방화범죄","절도범죄","도박범죄","마약범죄",
"교통범죄", "Prior(+)"), lwd=c(rep(1,10)), col=c("coral","green","forestgreen","skyblue","blue","purple","gray","magenta","black","red", "tan"))
#n
prior.n <- dbeta(grid, an, bn); prior.n<- prior.n/sum(prior.n)
plot(grid, posterior10, type='l', lwd=2, col="red", xlab="theta", ylab="Density", xlim=c(0.16, 0.75), ylim=c(0,600),main="10 plots of Field Joint Posterior")
lines(grid, posterior1.n*length(grid), col="coral", lwd=2)
lines(grid, posterior2.n*length(grid), col="green", lwd=2)
lines(grid, posterior3.n*length(grid), col="forestgreen", lwd=2)
lines(grid, posterior4.n, col="skyblue", lwd=2)
lines(grid, posterior5.n, col="blue", lwd=2)
lines(grid, posterior6.n, col="purple", lwd=2)
lines(grid, posterior7.n, col="gray", lwd=2)
lines(grid, posterior8.n, col="magenta", lwd=2)
lines(grid, posterior9.n, col="black", lwd=2)
lines(grid, prior.n*length(grid), col="tan", lwd=2)
legend("topright", c("강력범죄","성범죄","폭력범죄","재산범죄","지능범죄","방화범죄","절도범죄","도박범죄","마약범죄",
"교통범죄", "Prior(-)"), lwd=c(rep(1,10)), col=c("coral","green","forestgreen","skyblue","blue","purple","gray","magenta","black","red", "tan"))
## 전체 Joint Posterior
grid <- seq(0, 1, by=0.0001)
Np <- Crime %>% select(Total) %>% sum()
Sp <- Crime %>% select(Short_Term) %>% sum()
posterior.J <- dbeta(grid, Sp+1, Np-Sp+1)
m <- (1+Sp)/(2+Np)
m*(1-m)/(2+Np+1)
(Sp+(an-1)*19+1)/(Sp+(an-1)*19+1+Np-Sp+(bn-1)*19+1)
#hyperprior, prior
hyperprior <- dunif(grid, 0, 1)
prior <- dunif(grid, 0, 1)
prior.p <- dbeta(grid, 71, 31)
prior.n <- dbeta(grid, 31, 71)
#likelihoods
prob <- matrix(rep(0, 19*length(grid)), nrow=19, ncol=length(grid), byrow=T)
for (i in 1:19){
for (j in 1:length(grid)){
prob[i,j] <- dbinom(Crime$Short_Term[i], Crime$Total[i], grid[j])
}
prob[i,] <- prob[i,]/sum(prob[i,])
}
plot(grid, hyperprior, type='l', lwd=1, col="tan", xlab="theta", ylab="Density", xlim=c(0.1, 0.75), ylim=c(0,800),main="All plots")
lines(grid, prior, col="tan", lwd=2)
for (i in 1:19){
lines(grid, prob[i,]*length(grid), col="black", lwd=1)
}
lines(grid, posterior1*length(grid), col="blue", lwd=2)
lines(grid, posterior2*length(grid), col="blue", lwd=2)
lines(grid, posterior3*length(grid), col="blue", lwd=2)
lines(grid, posterior4, col="blue", lwd=2)
lines(grid, posterior5, col="blue", lwd=2)
lines(grid, posterior6, col="blue", lwd=2)
lines(grid, posterior7, col="blue", lwd=2)
lines(grid, posterior8, col="blue", lwd=2)
lines(grid, posterior9, col="blue", lwd=2)
lines(grid, posterior10, col="blue", lwd=2)
lines(grid, posterior.J, col="red", lwd=2)
legend("topright", c("Full Joint Post", "Joint of each Field", "Likelihood", "Prior", "Hyperprior"), lwd=c(1,1,1,1,1), col=c("red", "blue","black","tan","tan"))
#total joint posterior with positive priors
posterior.J.p <- dbeta(grid, Sp+(ap-1)*19+1, Np-Sp+(bp-1)*19+1)
plot(grid, hyperprior, type='l', lwd=1, col="tan", xlab="theta", ylab="Density", xlim=c(0.1, 0.75), ylim=c(0,800),main="All plots")
lines(grid, prior.p, col="forestgreen", lwd=2)
for (i in 1:19){
lines(grid, prob[i,]*length(grid), col="black", lwd=1)
}
lines(grid, posterior1.p*length(grid), col="blue", lwd=2)
lines(grid, posterior2.p*length(grid), col="blue", lwd=2)
lines(grid, posterior3.p*length(grid), col="blue", lwd=2)
lines(grid, posterior4.p, col="blue", lwd=2)
lines(grid, posterior5.p, col="blue", lwd=2)
lines(grid, posterior6.p, col="blue", lwd=2)
lines(grid, posterior7.p, col="blue", lwd=2)
lines(grid, posterior8.p, col="blue", lwd=2)
lines(grid, posterior9.p, col="blue", lwd=2)
lines(grid, posterior10.p, col="blue", lwd=2)
lines(grid, posterior.J.p, col="red", lwd=2)
legend("topright", c("Full Joint Post", "Joint of each Field", "Likelihood", "Prior(+)", "Hyperprior"), lwd=c(1,1,1,1,1), col=c("red", "blue","black","forestgreen","tan"))
#total joint posterior with negative priors
posterior.J.n <- dbeta(grid, Sp+(an-1)*19+1, Np-Sp+(bn-1)*19+1)
plot(grid, hyperprior, type='l', lwd=1, col="tan", xlab="theta", ylab="Density", xlim=c(0.1, 0.75), ylim=c(0,800),main="All plots")
lines(grid, prior.n, col="forestgreen", lwd=2)
for (i in 1:19){
lines(grid, prob[i,]*length(grid), col="black", lwd=1)
}
lines(grid, posterior1.p*length(grid), col="blue", lwd=2)
lines(grid, posterior2.p*length(grid), col="blue", lwd=2)
lines(grid, posterior3.p*length(grid), col="blue", lwd=2)
lines(grid, posterior4.p, col="blue", lwd=2)
lines(grid, posterior5.p, col="blue", lwd=2)
lines(grid, posterior6.p, col="blue", lwd=2)
lines(grid, posterior7.p, col="blue", lwd=2)
lines(grid, posterior8.p, col="blue", lwd=2)
lines(grid, posterior9.p, col="blue", lwd=2)
lines(grid, posterior10.p, col="blue", lwd=2)
lines(grid, posterior.J.p, col="red", lwd=2)
legend("topright", c("Full Joint Post", "Joint of each Field", "Likelihood", "Prior(-)", "Hyperprior"), lwd=c(1,1,1,1,1), col=c("red", "blue","black","forestgreen","tan"))