forked from kwea123/nerf_pl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_color_mesh.py
297 lines (252 loc) · 13.3 KB
/
extract_color_mesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import torch
import os
import numpy as np
import cv2
from collections import defaultdict
from tqdm import tqdm
import mcubes
import open3d as o3d
from plyfile import PlyData, PlyElement
from argparse import ArgumentParser
from models.rendering import *
from models.nerf import *
from utils import load_ckpt
from datasets import dataset_dict
torch.backends.cudnn.benchmark = True
def get_opts():
parser = ArgumentParser()
parser.add_argument('--root_dir', type=str,
default='/home/ubuntu/data/nerf_example_data/nerf_synthetic/lego',
help='root directory of dataset')
parser.add_argument('--dataset_name', type=str, default='blender',
choices=['blender', 'llff'],
help='which dataset to validate')
parser.add_argument('--scene_name', type=str, default='test',
help='scene name, used as output ply filename')
parser.add_argument('--img_wh', nargs="+", type=int, default=[800, 800],
help='resolution (img_w, img_h) of the image')
parser.add_argument('--N_samples', type=int, default=64,
help='number of samples to infer the acculmulated opacity')
parser.add_argument('--chunk', type=int, default=32*1024,
help='chunk size to split the input to avoid OOM')
parser.add_argument('--ckpt_path', type=str, required=True,
help='pretrained checkpoint path to load')
parser.add_argument('--N_grid', type=int, default=256,
help='size of the grid on 1 side, larger=higher resolution')
parser.add_argument('--x_range', nargs="+", type=float, default=[-1.0, 1.0],
help='x range of the object')
parser.add_argument('--y_range', nargs="+", type=float, default=[-1.0, 1.0],
help='x range of the object')
parser.add_argument('--z_range', nargs="+", type=float, default=[-1.0, 1.0],
help='x range of the object')
parser.add_argument('--sigma_threshold', type=float, default=20.0,
help='threshold to consider a location is occupied')
parser.add_argument('--occ_threshold', type=float, default=0.2,
help='''threshold to consider a vertex is occluded.
larger=fewer occluded pixels''')
#### method using vertex normals ####
parser.add_argument('--use_vertex_normal', action="store_true",
help='use vertex normals to compute color')
parser.add_argument('--N_importance', type=int, default=64,
help='number of fine samples to infer the acculmulated opacity')
parser.add_argument('--near_t', type=float, default=1.0,
help='the near bound factor to start the ray')
return parser.parse_args()
@torch.no_grad()
def f(models, embeddings, rays, N_samples, N_importance, chunk, white_back):
"""Do batched inference on rays using chunk."""
B = rays.shape[0]
results = defaultdict(list)
for i in range(0, B, chunk):
rendered_ray_chunks = \
render_rays(models,
embeddings,
rays[i:i+chunk],
N_samples,
False,
0,
0,
N_importance,
chunk,
white_back,
test_time=True)
for k, v in rendered_ray_chunks.items():
results[k] += [v]
for k, v in results.items():
results[k] = torch.cat(v, 0)
return results
if __name__ == "__main__":
args = get_opts()
kwargs = {'root_dir': args.root_dir,
'img_wh': tuple(args.img_wh)}
if args.dataset_name == 'llff':
kwargs['spheric_poses'] = True
kwargs['split'] = 'test'
else:
kwargs['split'] = 'train'
dataset = dataset_dict[args.dataset_name](**kwargs)
embedding_xyz = Embedding(3, 10)
embedding_dir = Embedding(3, 4)
embeddings = [embedding_xyz, embedding_dir]
nerf_fine = NeRF()
load_ckpt(nerf_fine, args.ckpt_path, model_name='nerf_fine')
nerf_fine.cuda().eval()
# define the dense grid for query
N = args.N_grid
xmin, xmax = args.x_range
ymin, ymax = args.y_range
zmin, zmax = args.z_range
# assert xmax-xmin == ymax-ymin == zmax-zmin, 'the ranges must have the same length!'
x = np.linspace(xmin, xmax, N)
y = np.linspace(ymin, ymax, N)
z = np.linspace(zmin, zmax, N)
xyz_ = torch.FloatTensor(np.stack(np.meshgrid(x, y, z), -1).reshape(-1, 3)).cuda()
dir_ = torch.zeros_like(xyz_).cuda()
# sigma is independent of direction, so any value here will produce the same result
# predict sigma (occupancy) for each grid location
print('Predicting occupancy ...')
with torch.no_grad():
B = xyz_.shape[0]
out_chunks = []
for i in tqdm(range(0, B, args.chunk)):
xyz_embedded = embedding_xyz(xyz_[i:i+args.chunk]) # (N, embed_xyz_channels)
dir_embedded = embedding_dir(dir_[i:i+args.chunk]) # (N, embed_dir_channels)
xyzdir_embedded = torch.cat([xyz_embedded, dir_embedded], 1)
out_chunks += [nerf_fine(xyzdir_embedded)]
rgbsigma = torch.cat(out_chunks, 0)
sigma = rgbsigma[:, -1].cpu().numpy()
sigma = np.maximum(sigma, 0).reshape(N, N, N)
# perform marching cube algorithm to retrieve vertices and triangle mesh
print('Extracting mesh ...')
vertices, triangles = mcubes.marching_cubes(sigma, args.sigma_threshold)
##### Until mesh extraction here, it is the same as the original repo. ######
vertices_ = (vertices/N).astype(np.float32)
## invert x and y coordinates (WHY? maybe because of the marching cubes algo)
x_ = (ymax-ymin) * vertices_[:, 1] + ymin
y_ = (xmax-xmin) * vertices_[:, 0] + xmin
vertices_[:, 0] = x_
vertices_[:, 1] = y_
vertices_[:, 2] = (zmax-zmin) * vertices_[:, 2] + zmin
vertices_.dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4')]
face = np.empty(len(triangles), dtype=[('vertex_indices', 'i4', (3,))])
face['vertex_indices'] = triangles
PlyData([PlyElement.describe(vertices_[:, 0], 'vertex'),
PlyElement.describe(face, 'face')]).write(f'{args.scene_name}.ply')
# remove noise in the mesh by keeping only the biggest cluster
print('Removing noise ...')
mesh = o3d.io.read_triangle_mesh(f"{args.scene_name}.ply")
idxs, count, _ = mesh.cluster_connected_triangles()
max_cluster_idx = np.argmax(count)
triangles_to_remove = [i for i in range(len(face)) if idxs[i] != max_cluster_idx]
mesh.remove_triangles_by_index(triangles_to_remove)
mesh.remove_unreferenced_vertices()
print(f'Mesh has {len(mesh.vertices)/1e6:.2f} M vertices and {len(mesh.triangles)/1e6:.2f} M faces.')
vertices_ = np.asarray(mesh.vertices).astype(np.float32)
triangles = np.asarray(mesh.triangles)
# perform color prediction
# Step 0. define constants (image width, height and intrinsics)
W, H = args.img_wh
K = np.array([[dataset.focal, 0, W/2],
[0, dataset.focal, H/2],
[0, 0, 1]]).astype(np.float32)
# Step 1. transform vertices into world coordinate
N_vertices = len(vertices_)
vertices_homo = np.concatenate([vertices_, np.ones((N_vertices, 1))], 1) # (N, 4)
if args.use_vertex_normal: ## use normal vector method as suggested by the author.
## see https://github.com/bmild/nerf/issues/44
mesh.compute_vertex_normals()
rays_d = torch.FloatTensor(np.asarray(mesh.vertex_normals))
near = dataset.bounds.min() * torch.ones_like(rays_d[:, :1])
far = dataset.bounds.max() * torch.ones_like(rays_d[:, :1])
rays_o = torch.FloatTensor(vertices_) - rays_d * near * args.near_t
nerf_coarse = NeRF()
load_ckpt(nerf_coarse, args.ckpt_path, model_name='nerf_coarse')
nerf_coarse.cuda().eval()
results = f([nerf_coarse, nerf_fine], embeddings,
torch.cat([rays_o, rays_d, near, far], 1).cuda(),
args.N_samples,
args.N_importance,
args.chunk,
dataset.white_back)
else: ## use my color average method. see README_mesh.md
## buffers to store the final averaged color
non_occluded_sum = np.zeros((N_vertices, 1))
v_color_sum = np.zeros((N_vertices, 3))
# Step 2. project the vertices onto each training image to infer the color
print('Fusing colors ...')
for idx in tqdm(range(len(dataset.image_paths))):
## read image of this pose
image = cv2.imread(dataset.image_paths[idx])[:,:,::-1]
image = cv2.resize(image, tuple(args.img_wh))
## read the camera to world relative pose
P_c2w = np.concatenate([dataset.poses[idx], np.array([0, 0, 0, 1]).reshape(1, 4)], 0)
P_w2c = np.linalg.inv(P_c2w)[:3] # (3, 4)
## project vertices from world coordinate to camera coordinate
vertices_cam = (P_w2c @ vertices_homo.T) # (3, N) in "right up back"
vertices_cam[1:] *= -1 # (3, N) in "right down forward"
## project vertices from camera coordinate to pixel coordinate
vertices_image = (K @ vertices_cam).T # (N, 3)
depth = vertices_image[:, -1:]+1e-5 # the depth of the vertices, used as far plane
vertices_image = vertices_image[:, :2]/depth
vertices_image = vertices_image.astype(np.float32)
vertices_image[:, 0] = np.clip(vertices_image[:, 0], 0, W-1)
vertices_image[:, 1] = np.clip(vertices_image[:, 1], 0, H-1)
## compute the color on these projected pixel coordinates
## using bilinear interpolation.
## NOTE: opencv's implementation has a size limit of 32768 pixels per side,
## so we split the input into chunks.
colors = []
remap_chunk = int(3e4)
for i in range(0, N_vertices, remap_chunk):
colors += [cv2.remap(image,
vertices_image[i:i+remap_chunk, 0],
vertices_image[i:i+remap_chunk, 1],
interpolation=cv2.INTER_LINEAR)[:, 0]]
colors = np.vstack(colors) # (N_vertices, 3)
## predict occlusion of each vertex
## we leverage the concept of NeRF by constructing rays coming out from the camera
## and hitting each vertex; by computing the accumulated opacity along this path,
## we can know if the vertex is occluded or not.
## for vertices that appear to be occluded from every input view, we make the
## assumption that its color is the same as its neighbors that are facing our side.
## (think of a surface with one side facing us: we assume the other side has the same color)
## ray's origin is camera origin
rays_o = torch.FloatTensor(dataset.poses[idx][:, -1]).expand(N_vertices, 3)
## ray's direction is the vector pointing from camera origin to the vertices
rays_d = torch.FloatTensor(vertices_) - rays_o # (N_vertices, 3)
rays_d = rays_d / torch.norm(rays_d, dim=-1, keepdim=True)
near = dataset.bounds.min() * torch.ones_like(rays_o[:, :1])
## the far plane is the depth of the vertices, since what we want is the accumulated
## opacity along the path from camera origin to the vertices
far = torch.FloatTensor(depth) * torch.ones_like(rays_o[:, :1])
results = f([nerf_fine], embeddings,
torch.cat([rays_o, rays_d, near, far], 1).cuda(),
args.N_samples,
0,
args.chunk,
dataset.white_back)
opacity = results['opacity_coarse'].cpu().numpy()[:, np.newaxis] # (N_vertices, 1)
opacity = np.nan_to_num(opacity, 1)
non_occluded = np.ones_like(non_occluded_sum) * 0.1/depth # weight by inverse depth
# near=more confident in color
non_occluded += opacity < args.occ_threshold
v_color_sum += colors * non_occluded
non_occluded_sum += non_occluded
# Step 3. combine the output and write to file
if args.use_vertex_normal:
v_colors = results['rgb_fine'].cpu().numpy() * 255.0
else: ## the combined color is the average color among all views
v_colors = v_color_sum/non_occluded_sum
v_colors = v_colors.astype(np.uint8)
v_colors.dtype = [('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]
vertices_.dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4')]
vertex_all = np.empty(N_vertices, vertices_.dtype.descr+v_colors.dtype.descr)
for prop in vertices_.dtype.names:
vertex_all[prop] = vertices_[prop][:, 0]
for prop in v_colors.dtype.names:
vertex_all[prop] = v_colors[prop][:, 0]
face = np.empty(len(triangles), dtype=[('vertex_indices', 'i4', (3,))])
face['vertex_indices'] = triangles
PlyData([PlyElement.describe(vertex_all, 'vertex'),
PlyElement.describe(face, 'face')]).write(f'{args.scene_name}.ply')
print('Done!')