-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel_depth6.py
216 lines (179 loc) · 6.1 KB
/
model_depth6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# coding: utf-8
# In[26]:
import time
import os.path
import os
import datetime
import numpy as np
import pandas as pd
import lightgbm as lgb
import matplotlib.pyplot as plt
from sklearn import metrics
import numpy as np
from pyecharts import Line, Grid
import numpy as np
import pandas as pd
# 内部测试
import lightgbm as lgb
from sklearn.metrics import mean_squared_error
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.ensemble import RandomForestRegressor
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.externals import joblib
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.feature_selection import SelectFromModel
from sklearn.decomposition import PCA
from sklearn.cross_validation import cross_val_score
from sklearn.model_selection import KFold
from sklearn.linear_model import Ridge
from sklearn.linear_model import RidgeCV
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.svm import SVR
from sklearn.utils import shuffle
import matplotlib.pyplot as plt
import xgboost as xgb
from lightgbm import LGBMRegressor
import math
import warnings
import numpy as np
import pandas as pd
import lightgbm as lgb
import xgboost as xgb
from sklearn.linear_model import BayesianRidge
from sklearn.model_selection import KFold, RepeatedKFold
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
from scipy import sparse
import warnings
import time
import sys
import os
import re
import datetime
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.offline as py
import plotly.graph_objs as go
import plotly.tools as tls
from sklearn.metrics import mean_squared_error
from sklearn.metrics import log_loss
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.filterwarnings("ignore")
pd.set_option('display.max_columns',None)
pd.set_option('max_colwidth',100)
warnings.filterwarnings('ignore')
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签\n"
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号\n"
# In[23]:
data_train = pd.read_csv('mydata/data_train.csv')
data_test = pd.read_csv('mydata/data_test.csv')
data_train.shape,data_test.shape
# # 删除某一类别占比超过90%的列
# good_cols = list(data_train.columns)
# bad_cols = []
# for col in data_train.columns:
# rate = data_train[col].value_counts(normalize=True, dropna=False).values[0]
# if rate >0.9:
# bad_cols.append(col)
# good_cols.remove(col)
# print(col,rate)
# print("删除 明显无用特征")
# for i in bad_cols:
# try:
# data_train.drop(i,inplace=True,axis=1)
# data_test.drop(i,inplace=True,axis=1)
# except:
# print(i)
data_train.drop('Unnamed: 0',inplace=True,axis=1)
# del_feature = []
# for i in data_train.columns:
# if data_train[i][data_train[i]==np.inf].shape[0] >0:
# del_feature.append(i)
# print(i)
# print("删除 明显无用特征")
# for i in del_feature:
# try:
# data_train.drop(i,inplace=True,axis=1)
# data_test.drop(i,inplace=True,axis=1)
# except:
# print(i)
# In[27]:
do_test=1
if do_test==1:
X_test = data_test.values
X_train = data_train.values
from sklearn.model_selection import StratifiedKFold
nfd=0.49
def eval_score(preds, dtrain):
labels = dtrain.get_label()
preds = np.where(preds>nfd,1,0)
score = f1_score(preds,labels,average='macro')
return 'score', score, True
if do_test==1:
print(X_train.shape,X_test.shape)
dele_label=1
if dele_label:
label = pd.read_csv('new_data/train_labels.csv')
print(label.groupby(label['label']).count())
y_train = label['label'].values
param = {
'num_leaves': 30,
'min_data_in_leaf': 10,
'objective':'binary',
'max_depth': 6,
'learning_rate': 0.01,
"min_child_samples": 30, # 没影响
"boosting": "gbdt",
"feature_fraction": 0.8,
"bagging_freq": 1,
"bagging_fraction": 0.8 ,
"bagging_seed": 917,
# "metric": ['auc','mse'],
"lambda_l1": 0.1,# 调成0.3试试
# "lambda_l2":0.1,
'nthread': -1,
# 'device': 'gpu',
"verbosity": -1}
# StratifiedKFold
folds = KFold(n_splits=5, shuffle=True, random_state=250)
oof_lgb = np.zeros(X_train.shape[0])
if do_test==1:
predictions_lgb = np.zeros(X_test.shape[0])
# predictions_lgb=[]
for fold_, (trn_idx, val_idx) in enumerate(folds.split(X_train, y_train)):
print("fold n°{}".format(fold_+1))
trn_data = lgb.Dataset(X_train[trn_idx], y_train[trn_idx])
val_data = lgb.Dataset(X_train[val_idx], y_train[val_idx])
num_round = 10000
clf = lgb.train(param,
trn_data,
num_round,
valid_sets = [trn_data, val_data],
feval=eval_score,
verbose_eval=200,
early_stopping_rounds = 200)
oof_lgb[val_idx] = clf.predict(X_train[val_idx], num_iteration=clf.best_iteration)
# predictions_lgb.append(clf.predict(X_test, num_iteration=clf.best_iteration))
if do_test==1:
predictions_lgb += clf.predict(X_test, num_iteration=clf.best_iteration) / folds.n_splits
print("CV score: ",f1_score(np.where(oof_lgb>nfd,1,0),y_train,average='macro'))
# In[29]:
upup =pd.DataFrame()
# pre_label = label = list(map(lambda x:1 if x>ll[np.argmax(auc)] else 0,predictions_lgb))
pre_label = label = list(map(lambda x:1 if x>0.4525 else 0,predictions_lgb))
upup['sample_file_name'] = pd.read_csv('new_data/submit_example.csv')['sample_file_name']
up_per = pd.DataFrame()
up_per['sample_file_name'] = upup['sample_file_name']
file_name ='复现数据'
try:
os.mkdir(file_name)
except:
print('已存在')
upup['label'] =pre_label
up_per['label'] =predictions_lgb
name = 'baseline-lamda=0.1-num=30-leaf10-maxdepth6'
up_per.to_csv(file_name+'/概率'+name+'.csv',index=None)