-
Notifications
You must be signed in to change notification settings - Fork 16
/
initialization_methods.py
61 lines (45 loc) · 2.28 KB
/
initialization_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
def forgy(X, row_count, n_clusters):
return X [ np.random.choice(row_count, size=n_clusters, replace=False) ]
def macqueen(X, n_clusters):
return X [:n_clusters]
def maximin(X, n_clusters):
X_ = np.copy(X)
initial_centers = np.zeros((n_clusters, X_.shape[1]))
X_norms = np.linalg.norm(X_, axis = 1)
X_norms_max_i = X_norms.argmax()
initial_centers[0] = X_[X_norms_max_i]
X_ = np.delete(X_, X_norms_max_i, axis = 0)
for i in range(1, n_clusters):
distances = np.zeros((X_.shape[0], i))
for index, center in enumerate(initial_centers[:i]):
distances[:, index] = np.linalg.norm(X_ - center, axis = 1)
max_min_index = distances.min(axis = 1).argmax()
initial_centers[i] = X_[max_min_index]
X_ = np.delete(X_, max_min_index, axis = 0)
return initial_centers
def var_part(X, n_clusters):
X_ = np.append(X, np.zeros(X.shape[0])[:, np.newaxis], axis = 1)
initial_centers = np.zeros((n_clusters, X.shape[1]))
cluster_i = 1
while cluster_i != n_clusters:
within_clusters_sum_squares = np.zeros(cluster_i)
for j in range(cluster_i):
cluster_members = X_[ X_[:, -1] == j ]
cluster_mean = cluster_members.mean(axis = 0)
within_clusters_sum_squares[j] = np.linalg.norm(cluster_members - cluster_mean, axis = 1).sum()
# Cluster which has greatest SSE
max_sse_i = within_clusters_sum_squares.argmax()
X_max_sse_i = X_[:, -1] == max_sse_i
X_max_sse = X_ [ X_max_sse_i ]
variances, means = X_max_sse.var(axis = 0), X_max_sse.mean(axis = 0)
max_variance_i = variances.argmax()
max_variance_mean = means [ max_variance_i ]
X_smaller_mean = X_max_sse[:, max_variance_i] <= max_variance_mean
X_greater_mean = X_max_sse[:, max_variance_i] > max_variance_mean
initial_centers[max_sse_i] = X_max_sse [ X_smaller_mean ].mean(axis = 0)[:-1]
initial_centers[cluster_i] = X_max_sse [ X_greater_mean ].mean(axis = 0)[:-1]
X_[ (X_max_sse_i) & (X_ [:, max_variance_i] <= max_variance_mean), -1] = cluster_i
X_[ (X_max_sse_i) & (X_ [:, max_variance_i] > max_variance_mean), -1] = max_sse_i
cluster_i += 1
return initial_centers