You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: _sources/lecture/gp.md
+5-5Lines changed: 5 additions & 5 deletions
Original file line number
Diff line number
Diff line change
@@ -643,13 +643,13 @@ $$
643
643
Without discussing all the details, we will now briefly sketch how Gaussian Processes can be adapted to classification. Consider for simplicity the 2-class problem:
644
644
645
645
$$
646
-
0 < y < 1, \quad h(x) = \text{sigmoid}(\varphi(x))
646
+
0 < y < 1, \quad h(x) = \text{sigmoid}(\varphi(x)).
647
647
$$
648
648
649
-
the PDF for $y$ conditioned on the feature $\varphi(x)$ then follows a Bernoulli-distribution:
649
+
The PDF for $y$ conditioned on the feature $\varphi(x)$ then follows a Bernoulli-distribution:
<divclass="amsmath math notranslate nohighlight" id="equation-0db22e97-6b0a-46e0-a476-53d8ecd3575d">
668
-
<spanclass="eqno">(2.30)<aclass="headerlink" href="#equation-0db22e97-6b0a-46e0-a476-53d8ecd3575d" title="Permalink to this equation">#</a></span>\[\begin{align}
667
+
<divclass="amsmath math notranslate nohighlight" id="equation-b60eee56-96e4-4e84-8e5b-6e3421e3a6c3">
668
+
<spanclass="eqno">(2.30)<aclass="headerlink" href="#equation-b60eee56-96e4-4e84-8e5b-6e3421e3a6c3" title="Permalink to this equation">#</a></span>\[\begin{align}
Copy file name to clipboardExpand all lines: lecture/gp.html
+5-5Lines changed: 5 additions & 5 deletions
Original file line number
Diff line number
Diff line change
@@ -999,12 +999,12 @@ <h2><span class="section-number">7.4. </span>GP for Classification<a class="head
999
999
<p>Without discussing all the details, we will now briefly sketch how Gaussian Processes can be adapted to classification. Consider for simplicity the 2-class problem:</p>
1000
1000
<divclass="math notranslate nohighlight">
1001
1001
\[
1002
-
0 < y < 1, \quad h(x) = \text{sigmoid}(\varphi(x))
1002
+
0 < y < 1, \quad h(x) = \text{sigmoid}(\varphi(x)).
1003
1003
\]</div>
1004
-
<p>the PDF for <spanclass="math notranslate nohighlight">\(y\)</span> conditioned on the feature <spanclass="math notranslate nohighlight">\(\varphi(x)\)</span> then follows a Bernoulli-distribution:</p>
1004
+
<p>The PDF for <spanclass="math notranslate nohighlight">\(y\)</span> conditioned on the feature <spanclass="math notranslate nohighlight">\(\varphi(x)\)</span> then follows a Bernoulli-distribution:</p>
<p>Finding the predictive PDF for unseen data <spanclass="math notranslate nohighlight">\(p(y^{(n+1)}|y)\)</span>, given the training data</p>
1010
1010
<divclass="math notranslate nohighlight">
@@ -1031,13 +1031,13 @@ <h2><span class="section-number">7.4. </span>GP for Classification<a class="head
1031
1031
<p>hence giving us</p>
1032
1032
<divclass="math notranslate nohighlight">
1033
1033
\[
1034
-
p(\tilde{\varphi}) = \mathcal{N}( \tilde{\varphi}; 0, K + \nu I)
1034
+
p(\tilde{\varphi}) = \mathcal{N}( \tilde{\varphi}; 0, K + \nu I),
1035
1035
\]</div>
1036
1036
<p>where <spanclass="math notranslate nohighlight">\(K_{ij} = k(x^{(i)}, x^{(j)})\)</span>, i.e., a Grammian matrix generated by the kernel functions from the feature map <spanclass="math notranslate nohighlight">\(\varphi(x)\)</span>.</p>
1037
1037
<blockquote>
1038
1038
<div><ulclass="simple">
1039
1039
<li><p>Note that we do <strong>NOT</strong> include an explicit noise term in the data covariance as we assume that all sample data have been correctly classified.</p></li>
1040
-
<li><p>For numerical reasons, we introduce a noise-like form that improves the conditioning of <spanclass="math notranslate nohighlight">\(K + \mu I\)</span></p></li>
1040
+
<li><p>For numerical reasons, we introduce a noise-like form <spanclass="math notranslate nohighlight">\(\nu I\)</span>that improves the conditioning of <spanclass="math notranslate nohighlight">\(K\)</span></p></li>
1041
1041
<li><p>For two-class classification it is sufficient to predict <spanclass="math notranslate nohighlight">\(p(y^{(n+1)} = 1 | y)\)</span> as <spanclass="math notranslate nohighlight">\(p(y^{(n+1)} = 0 | y) = 1 - p(y^{(n+1)} = 1 | y)\)</span></p></li>
0 commit comments