-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata.py
450 lines (396 loc) · 14.4 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import streamlit as st
import pandas as pd
import dask.dataframe as dd
import util
conn = util.connection(database="dev_lipsa")
s3_uri = "s3://tuva-public-resources/data-extracts/lds/"
global_converters = {"year": str}
@st.cache_data
def test_results():
query = """
select * from data_profiling.test_result
"""
data = pd.read_csv(s3_uri + "test_results.csv")
return data
@st.cache_data
def use_case():
query = """
select * from data_profiling.use_case
"""
data = pd.read_csv(s3_uri + "use_case.csv")
return data
@st.cache_data
def cost_summary():
query = """
select *
from dbt_lipsa.cost_summary
order by 1, 2, 3
"""
data = pd.read_csv(s3_uri + "cost_summary.csv")
return data
@st.cache_data
def year_months():
query = """
select distinct
year(claim_end_date)::text || '-' ||
lpad(month(claim_end_date)::text, 2, '0')
as year_month
, sum(paid_amount)
from core.medical_claim
group by 1
having sum(paid_amount) > 10
order by 1
"""
data = pd.read_csv(s3_uri + "year_months.csv")
return data
@st.cache_data
def summary_stats():
query = """
with medical as (
select distinct
year(claim_end_date)::text year
, quarter(claim_end_date)::text quarter
, sum(paid_amount) as medical_paid_amount
from core.medical_claim
group by 1, 2
)
, elig as (
select
substr(year_month, 0, 4) as year
, quarter(to_date(concat(year_month, '01'), 'YYYYMMDD')) as quarter
, sum(member_months) as member_month_count
from pmpm.pmpm
group by 1, 2
)
select
concat(year, 'Q', quarter) as display
, year
, quarter
, lag(quarter) over(order by quarter) as prior_quarter
, medical_paid_amount as current_period_medical_paid
, lag(medical_paid_amount) over(order by quarter) as prior_period_medical_paid
, div0null(
medical_paid_amount - lag(medical_paid_amount) over(order by quarter),
lag(medical_paid_amount) over(order by quarter)
) as pct_change_medical_paid
, member_month_count as current_period_member_months
, lag(member_month_count) over(order by quarter) as prior_period_member_months
, div0null(
member_month_count - lag(member_month_count) over(order by quarter),
lag(member_month_count) over(order by quarter)
) as pct_change_member_months
from medical
join elig using(year, quarter)
"""
data = pd.read_csv(s3_uri + "summary_stats.csv", converters=global_converters)
return data
@st.cache_data
def pmpm_by_claim_type():
query = """
with spend_summary as (
select
year(claim_end_date)::text || '-' ||
lpad(month(claim_end_date)::text, 2, '0')
as year_month
, claim_type
, sum(paid_amount) as paid_amount_sum
from core.medical_claim
group by 1, 2
having sum(paid_amount) > 0
order by 1, 2 desc
), pharmacy_summary as (
select
year(dispensing_date)::text || '-' ||
lpad(month(dispensing_date)::text, 2, '0')
as year_month
, 'pharmacy' as claim_type
, sum(paid_amount) as paid_amount_sum
from core.pharmacy_claim
group by 1
), together as (
select * from spend_summary union all
select * from pharmacy_summary
), elig as (
select
CONCAT(LEFT(year_month, 4), '-', RIGHT(year_month, 2)) as year_month
, member_months as member_month_count
from pmpm.pmpm
)
select
*
, substr(year_month, 0, 4) as year
, paid_amount_sum / member_month_count as paid_amount_pmpm
from together
join elig using(year_month)
"""
data = pd.read_csv(s3_uri + "pmpm_by_claim_type.csv", converters=global_converters)
return data
@st.cache_data
def pmpm_by_service_category_1():
query = """
with spend_summary as (
select
year(claim_end_date)::text || '-' ||
lpad(month(claim_end_date)::text, 2, '0')
as year_month
, service_category_1
, sum(paid_amount) as paid_amount_sum
, count(*) as row_count
from core.medical_claim
left join service_category.service_category_grouper using(claim_id)
group by 1, 2
having sum(paid_amount) > 0
order by 1, 2 desc
), elig as (
select
CONCAT(LEFT(year_month, 4), '-', RIGHT(year_month, 2)) as year_month
, member_months as member_month_count
from pmpm.pmpm
)
select
*
, paid_amount_sum / member_month_count as paid_amount_pmpm
from spend_summary
join elig using(year_month)
"""
data = pd.read_csv(s3_uri + "pmpm_by_service_category_1.csv")
return data
@st.cache_data
def pmpm_by_service_category_1_2():
query = """
with spend_summary as (
select
year(claim_end_date)::text || '-' ||
lpad(month(claim_end_date)::text, 2, '0')
as year_month
, service_category_1
, service_category_2
, sum(paid_amount) as paid_amount_sum
, count(*) as row_count
from core.medical_claim
left join service_category.service_category_grouper using(claim_id)
group by 1, 2, 3
having sum(paid_amount) > 0
order by 1, 2, 3 desc
), elig as (
select
CONCAT(LEFT(year_month, 4), '-', RIGHT(year_month, 2)) as year_month
, member_months as member_month_count
from pmpm.pmpm
)
select
*
, paid_amount_sum / member_month_count as paid_amount_pmpm
from spend_summary
join elig using(year_month)
"""
data = pd.read_csv(s3_uri + "pmpm_by_service_category_1_2.csv")
return data
@st.cache_data
def pmpm_by_service_category_1_provider(service_cat, year_month):
query = """
with spend_summary as (
select
year(claim_end_date)::text || '-' ||
lpad(month(claim_end_date)::text, 2, '0')
as year_month
, service_category_1
, p.provider_name
, sum(paid_amount) as paid_amount_sum
, count(*) as row_count
from core.medical_claim c
left join service_category.service_category_grouper using(claim_id)
left join core.provider p
on c.rendering_npi = p.npi
group by 1, 2, 3
having sum(paid_amount) > 0
order by 1, 2, 3 desc
), elig as (
select
CONCAT(LEFT(year_month, 4), '-', RIGHT(year_month, 2)) as year_month
, member_months as member_month_count
from pmpm.pmpm
)
select
*
, paid_amount_sum / member_month_count as paid_amount_pmpm
from spend_summary
join elig using(year_month)
"""
data_path = s3_uri + "pmpm_by_service_category_1_provider.csv"
data = dd.read_csv(data_path, storage_options={"anon": True})
data = (
data.loc[
((data["year_month"] == year_month) | (year_month == "All Time"))
& data["service_category_1"].isin([service_cat])
]
.drop("service_category_1", axis=1)
.reset_index(drop=True)
)
grouped = util.group_for_pmpm(data, "provider_name")
return grouped.compute()
@st.cache_data
def pmpm_by_service_category_1_condition():
query = """
with spend_summary as (
select
year(claim_end_date)::text || '-' ||
lpad(month(claim_end_date)::text, 2, '0')
as year_month
, service_category_1
, cc.condition_family
, sum(paid_amount) as paid_amount_sum
, count(*) as row_count
from core.medical_claim mc
left join service_category.service_category_grouper using(claim_id)
left join chronic_conditions.tuva_chronic_conditions_long cc
on mc.patient_id = cc.patient_id
and cc.last_diagnosis_date >= mc.claim_end_date
and cc.first_diagnosis_date <= mc.claim_end_date
group by 1, 2, 3
having sum(paid_amount) > 0
order by 1, 2, 3 desc
), elig as (
select
CONCAT(LEFT(year_month, 4), '-', RIGHT(year_month, 2)) as year_month
, member_months as member_month_count
from pmpm.pmpm
)
select
*
, paid_amount_sum / member_month_count as paid_amount_pmpm
from spend_summary
join elig using(year_month)
"""
data = pd.read_csv(s3_uri + "pmpm_by_service_category_1_condition.csv")
return data
@st.cache_data
def pmpm_by_service_category_1_claim_type():
query = """
with spend_summary as (
select
year(claim_end_date)::text || '-' ||
lpad(month(claim_end_date)::text, 2, '0')
as year_month
, service_category_1
, claim_type
, sum(paid_amount) as paid_amount_sum
, count(*) as row_count
from core.medical_claim c
left join service_category.service_category_grouper using(claim_id)
group by 1, 2, 3
having sum(paid_amount) > 0
order by 1, 2, 3 desc
), elig as (
select
CONCAT(LEFT(year_month, 4), '-', RIGHT(year_month, 2)) as year_month
, member_months as member_month_count
from pmpm.pmpm
)
select
*
, paid_amount_sum / member_month_count as paid_amount_pmpm
from spend_summary
join elig using(year_month)
"""
data = pd.read_csv(s3_uri + "pmpm_by_service_category_1_claim_type.csv")
return data
@st.cache_data
def pmpm_data():
query = """SELECT PT.*, PB.MEMBER_COUNT, PHARMACY_SPEND FROM PMPM.PMPM_TRENDS PT
LEFT JOIN (SELECT CONCAT(LEFT(YEAR_MONTH, 4), '-', RIGHT(YEAR_MONTH, 2)) AS YEAR_MONTH,
COUNT(*) AS MEMBER_COUNT,
SUM(PHARMACY_PAID) AS PHARMACY_SPEND
FROM PMPM.PMPM_BUILDER
GROUP BY YEAR_MONTH) AS PB
ON PT.YEAR_MONTH = PB.YEAR_MONTH;"""
data = pd.read_csv(s3_uri + "pmpm_data.csv")
# data["year_month"] = pd.to_datetime(data["year_month"], format="%Y-%m").dt.date
data["year"] = data["year_month"].str[:4]
data["pharmacy_spend"] = data["pharmacy_spend"].astype(float)
return data
@st.cache_data
def gender_data():
query = """SELECT GENDER, COUNT(*) AS COUNT FROM CORE.PATIENT GROUP BY 1;"""
data = pd.read_csv(s3_uri + "gender_data.csv")
return data
@st.cache_data
def race_data():
query = """SELECT RACE, COUNT(*) AS COUNT FROM CORE.PATIENT GROUP BY 1;"""
data = pd.read_csv(s3_uri + "race_data.csv")
return data
@st.cache_data
def age_data():
query = """SELECT CASE
WHEN div0(current_date() - BIRTH_DATE, 365) < 49 THEN '34-48'
WHEN div0(current_date() - BIRTH_DATE, 365) >= 49 AND div0(current_date() - BIRTH_DATE, 365) < 65 THEN '49-64'
WHEN div0(current_date() - BIRTH_DATE, 365) >= 65 AND div0(current_date() - BIRTH_DATE, 365) < 79 THEN '65-78'
WHEN div0(current_date() - BIRTH_DATE, 365) >= 79 AND div0(current_date() - BIRTH_DATE, 365) < 99 THEN '79-98'
WHEN div0(current_date() - BIRTH_DATE, 365) >= 99 THEN '99+' END
AS AGE_GROUP,
COUNT(*) AS COUNT
FROM CORE.PATIENT
GROUP BY 1
ORDER BY 1;"""
data = pd.read_csv(s3_uri + "age_data.csv")
return data
@st.cache_data
def pmpm_by_chronic_condition():
query = """
with conditions as (
select distinct
year(condition_date)::text || '-' || lpad(month(condition_date)::text, 2, '0') as year_month
, claim_id
, patient_id
, code
, condition
, condition_family
from core.condition
inner join chronic_conditions._value_set_tuva_chronic_conditions_hierarchy vs on condition.code = vs.icd_10_cm_code
where code_type = 'icd-10-cm'
)
, medical_spend as (
select
year(claim_start_date)::text || '-' || lpad(month(claim_start_date)::text, 2, '0') as year_month
, claim_id
, patient_id
, sum(paid_amount) as medical_paid_amount
from core.medical_claim
group by 1, 2, 3
), merged as (
select
year_month
, condition_family
, sum(medical_paid_amount) as medical_paid_amount_sum
from conditions
join medical_spend using(patient_id, claim_id, year_month)
group by 1, 2
), elig as (
select
CONCAT(LEFT(year_month, 4), '-', RIGHT(year_month, 2)) as year_month
, member_months as member_month_count
from pmpm.pmpm
)
select
*
from merged
join elig using(year_month)
order by 2, 1
"""
data = pd.read_csv(s3_uri + "pmpm_by_chronic_condition.csv")
return data
@st.cache_data
def condition_data():
query = """SELECT
CONCAT(date_part(year, FIRST_DIAGNOSIS_DATE), '-', lpad(date_part(month, FIRST_DIAGNOSIS_DATE), 2, 0)) AS DIAGNOSIS_YEAR_MONTH,
CONDITION,
COUNT(*) AS CONDITION_CASES,
AVG(LAST_DIAGNOSIS_DATE + 1 - FIRST_DIAGNOSIS_DATE) AS DIAGNOSIS_DURATION
FROM CHRONIC_CONDITIONS.TUVA_CHRONIC_CONDITIONS_LONG
GROUP BY 1,2
ORDER BY 3 DESC;"""
data = pd.read_csv(s3_uri + "condition_data.csv")
data["diagnosis_year"] = pd.to_datetime(
data["diagnosis_year_month"]
).dt.year.astype(str)
return data