forked from aikuharenko/kmeans
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_softmax.lua
166 lines (118 loc) · 3.73 KB
/
train_softmax.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
require 'cutorch'
require 'cunn'
function train_softmax(train_images, train_labels, test_images, test_labels, extract_features, n, opt)
local epoch = 1
local time = sys.clock()
local trsize = (#train_images)[1]
classes = {'1','2','3','4','5','6','7','8','9','0'}
train_confusion = optim.ConfusionMatrix(classes)
test_confusion = optim.ConfusionMatrix(classes)
Logger = optim.Logger('train.log')
ce_logger = optim.Logger('ce_train.log')
model, criterion = get_classifier(n, opt)
parameters, gradParameters = model:getParameters()
optimState = {
learningRate = opt.learning_rate,
weightDecay = 0,
momentum = 0,
learningRateDecay = opt.learning_rate_decay
}
for e = 1, opt.nepochs do
--TRAIN--
shuffle = torch.randperm(trsize)
print("==> online epoch # " .. epoch .. ' [batchSize = ' .. opt.batch_size .. ']')
local time = sys.clock()
ce_train_err = 0
for t = 1, trsize, opt.batch_size do
-- create mini batch
inputs = {}
targets = {}
inputs = torch.Tensor(opt.batch_size, n)
targets = torch.Tensor(opt.batch_size)
local j = 0
for i = t, math.min(t + opt.batch_size - 1, trsize) do
j = j + 1
local sample = extract_features(train_images[shuffle[i]])
local input = sample:clone()
inputs[j] = input
targets[j] = train_labels[shuffle[i]]
end
if opt.cuda then
inputs = inputs:cuda()
else
inputs = inputs:float()
end
-- create closure to evaluate f(X) and df/dX
local feval = function(x)
if x ~= parameters then
parameters:copy(x)
end
gradParameters:zero()
outputs = model:forward(inputs)
f = criterion:forward(outputs, targets)
df_do = criterion:backward(outputs, targets)
model:backward(inputs, df_do)
for i = 1,opt.batch_size do
train_confusion:add(outputs[i], targets[i])
end
return f, gradParameters
end
xxx, ce = optim.sgd(feval, parameters, optimState)
ce_train_err = ce_train_err + ce[1]
end
ce_train_err = ce_train_err / (trsize / opt.batch_size)
local train_time = sys.clock() - time
--END TRAIN--
--TEST--
local time = sys.clock()
print('==> testing on test set:')
local ce_test_err = 0
for t = 1, tesize do
local sample = extract_features(test_images[t])
input = sample:clone()
if opt.cuda then
input = input:cuda()
else
input = input:float()
end
local target = test_labels[t]
local pred = model:forward(input)
local ce_err = criterion:forward(pred, target)
ce_test_err = ce_test_err + ce_err
test_confusion:add(pred, target)
end
ce_test_err = ce_test_err / tesize
local test_time = sys.clock() - time
--END TEST
-- update logger/plot
train_confusion:updateValids()
test_confusion:updateValids()
Logger:add{['% train accuracy'] = train_confusion.totalValid * 100,
['% test accuracy'] = test_confusion.totalValid * 100}
Logger:style{['% train accuracy'] = '-', ['% test accuracy'] = '-'}
Logger:plot()
ce_logger:add{['ce train error'] = ce_train_err,
['ce test error'] = ce_test_err}
ce_logger:style{['ce train error'] = '-', ['ce test error'] = '-'}
ce_logger:plot()
print('train accuracy=' .. train_confusion.totalValid * 100 .. '. ce error=' .. ce_train_err .. '. time=' .. train_time)
print('test accuracy=' .. test_confusion.totalValid * 100 .. '. ce error=' .. ce_test_err .. '. time=' .. test_time)
train_confusion:zero()
test_confusion:zero()
end
end
function get_classifier(n, opt)
local model = nn.Sequential()
model:add(nn.Linear(n, 10))
model:add(nn.LogSoftMax())
model:add(nn.Reshape(10))
local criterion = nn.ClassNLLCriterion()
if opt.cuda then
model:cuda()
criterion:cuda()
else
model:float()
criterion:float()
end
return model, criterion
end