-
Notifications
You must be signed in to change notification settings - Fork 130
/
Copy pathsrresnet.py
executable file
·141 lines (111 loc) · 5.37 KB
/
srresnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.nn as nn
import math
class _Residual_Block(nn.Module):
def __init__(self):
super(_Residual_Block, self).__init__()
self.conv1 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)
self.in1 = nn.InstanceNorm2d(64, affine=True)
self.relu = nn.LeakyReLU(0.2, inplace=True)
self.conv2 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)
self.in2 = nn.InstanceNorm2d(64, affine=True)
def forward(self, x):
identity_data = x
output = self.relu(self.in1(self.conv1(x)))
output = self.in2(self.conv2(output))
output = torch.add(output,identity_data)
return output
class _NetG(nn.Module):
def __init__(self):
super(_NetG, self).__init__()
self.conv_input = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=9, stride=1, padding=4, bias=False)
self.relu = nn.LeakyReLU(0.2, inplace=True)
self.residual = self.make_layer(_Residual_Block, 16)
self.conv_mid = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn_mid = nn.InstanceNorm2d(64, affine=True)
self.upscale4x = nn.Sequential(
nn.Conv2d(in_channels=64, out_channels=256, kernel_size=3, stride=1, padding=1, bias=False),
nn.PixelShuffle(2),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(in_channels=64, out_channels=256, kernel_size=3, stride=1, padding=1, bias=False),
nn.PixelShuffle(2),
nn.LeakyReLU(0.2, inplace=True),
)
self.conv_output = nn.Conv2d(in_channels=64, out_channels=3, kernel_size=9, stride=1, padding=4, bias=False)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
def make_layer(self, block, num_of_layer):
layers = []
for _ in range(num_of_layer):
layers.append(block())
return nn.Sequential(*layers)
def forward(self, x):
out = self.relu(self.conv_input(x))
residual = out
out = self.residual(out)
out = self.bn_mid(self.conv_mid(out))
out = torch.add(out,residual)
out = self.upscale4x(out)
out = self.conv_output(out)
return out
class _NetD(nn.Module):
def __init__(self):
super(_NetD, self).__init__()
self.features = nn.Sequential(
# input is (3) x 96 x 96
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# state size. (64) x 96 x 96
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True),
# state size. (64) x 96 x 96
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
# state size. (64) x 48 x 48
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
# state size. (128) x 48 x 48
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
# state size. (256) x 24 x 24
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
# state size. (256) x 12 x 12
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
# state size. (512) x 12 x 12
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
)
self.LeakyReLU = nn.LeakyReLU(0.2, inplace=True)
self.fc1 = nn.Linear(512 * 6 * 6, 1024)
self.fc2 = nn.Linear(1024, 1)
self.sigmoid = nn.Sigmoid()
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0.0, 0.02)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def forward(self, input):
out = self.features(input)
# state size. (512) x 6 x 6
out = out.view(out.size(0), -1)
# state size. (512 x 6 x 6)
out = self.fc1(out)
# state size. (1024)
out = self.LeakyReLU(out)
out = self.fc2(out)
out = self.sigmoid(out)
return out.view(-1, 1).squeeze(1)