-
Notifications
You must be signed in to change notification settings - Fork 289
/
Copy patht3_dataset.py
449 lines (413 loc) · 17.3 KB
/
t3_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import os
import numpy as np
import cv2
import random
import math
import time
from PIL import Image, ImageDraw, ImageFont
from torch.utils.data import Dataset, DataLoader
from dataset_util import load, show_bbox_on_image
phrase_list = [
', content and position of the texts are ',
', textual material depicted in the image are ',
', texts that says ',
', captions shown in the snapshot are ',
', with the words of ',
', that reads ',
', the written materials on the picture: ',
', these texts are written on it: ',
', captions are ',
', content of the text in the graphic is '
]
def insert_spaces(string, nSpace):
if nSpace == 0:
return string
new_string = ""
for char in string:
new_string += char + " " * nSpace
return new_string[:-nSpace]
def draw_glyph(font, text):
g_size = 50
W, H = (512, 80)
new_font = font.font_variant(size=g_size)
img = Image.new(mode='1', size=(W, H), color=0)
draw = ImageDraw.Draw(img)
left, top, right, bottom = new_font.getbbox(text)
text_width = max(right-left, 5)
text_height = max(bottom - top, 5)
ratio = min(W*0.9/text_width, H*0.9/text_height)
new_font = font.font_variant(size=int(g_size*ratio))
text_width, text_height = new_font.getsize(text)
offset_x, offset_y = new_font.getoffset(text)
x = (img.width - text_width) // 2
y = (img.height - text_height) // 2 - offset_y//2
draw.text((x, y), text, font=new_font, fill='white')
img = np.expand_dims(np.array(img), axis=2).astype(np.float64)
return img
def draw_glyph2(font, text, polygon, vertAng=10, scale=1, width=512, height=512, add_space=True):
enlarge_polygon = polygon*scale
rect = cv2.minAreaRect(enlarge_polygon)
box = cv2.boxPoints(rect)
box = np.int0(box)
w, h = rect[1]
angle = rect[2]
if angle < -45:
angle += 90
angle = -angle
if w < h:
angle += 90
vert = False
if (abs(angle) % 90 < vertAng or abs(90-abs(angle) % 90) % 90 < vertAng):
_w = max(box[:, 0]) - min(box[:, 0])
_h = max(box[:, 1]) - min(box[:, 1])
if _h >= _w:
vert = True
angle = 0
img = np.zeros((height*scale, width*scale, 3), np.uint8)
img = Image.fromarray(img)
# infer font size
image4ratio = Image.new("RGB", img.size, "white")
draw = ImageDraw.Draw(image4ratio)
_, _, _tw, _th = draw.textbbox(xy=(0, 0), text=text, font=font)
text_w = min(w, h) * (_tw / _th)
if text_w <= max(w, h):
# add space
if len(text) > 1 and not vert and add_space:
for i in range(1, 100):
text_space = insert_spaces(text, i)
_, _, _tw2, _th2 = draw.textbbox(xy=(0, 0), text=text_space, font=font)
if min(w, h) * (_tw2 / _th2) > max(w, h):
break
text = insert_spaces(text, i-1)
font_size = min(w, h)*0.80
else:
shrink = 0.75 if vert else 0.85
font_size = min(w, h) / (text_w/max(w, h)) * shrink
new_font = font.font_variant(size=int(font_size))
left, top, right, bottom = new_font.getbbox(text)
text_width = right-left
text_height = bottom - top
layer = Image.new('RGBA', img.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(layer)
if not vert:
draw.text((rect[0][0]-text_width//2, rect[0][1]-text_height//2-top), text, font=new_font, fill=(255, 255, 255, 255))
else:
x_s = min(box[:, 0]) + _w//2 - text_height//2
y_s = min(box[:, 1])
for c in text:
draw.text((x_s, y_s), c, font=new_font, fill=(255, 255, 255, 255))
_, _t, _, _b = new_font.getbbox(c)
y_s += _b
rotated_layer = layer.rotate(angle, expand=1, center=(rect[0][0], rect[0][1]))
x_offset = int((img.width - rotated_layer.width) / 2)
y_offset = int((img.height - rotated_layer.height) / 2)
img.paste(rotated_layer, (x_offset, y_offset), rotated_layer)
img = np.expand_dims(np.array(img.convert('1')), axis=2).astype(np.float64)
return img
def get_caption_pos(ori_caption, pos_idxs, prob=1.0, place_holder='*'):
idx2pos = {
0: " top left",
1: " top",
2: " top right",
3: " left",
4: random.choice([" middle", " center"]),
5: " right",
6: " bottom left",
7: " bottom",
8: " bottom right"
}
new_caption = ori_caption + random.choice(phrase_list)
pos = ''
for i in range(len(pos_idxs)):
if random.random() < prob and pos_idxs[i] > 0:
pos += place_holder + random.choice([' located', ' placed', ' positioned', '']) + random.choice([' at', ' in', ' on']) + idx2pos[pos_idxs[i]] + ', '
else:
pos += place_holder + ' , '
pos = pos[:-2] + '.'
new_caption += pos
return new_caption
def generate_random_rectangles(w, h, box_num):
rectangles = []
for i in range(box_num):
x = random.randint(0, w)
y = random.randint(0, h)
w = random.randint(16, 256)
h = random.randint(16, 96)
angle = random.randint(-45, 45)
p1 = (x, y)
p2 = (x + w, y)
p3 = (x + w, y + h)
p4 = (x, y + h)
center = ((x + x + w) / 2, (y + y + h) / 2)
p1 = rotate_point(p1, center, angle)
p2 = rotate_point(p2, center, angle)
p3 = rotate_point(p3, center, angle)
p4 = rotate_point(p4, center, angle)
rectangles.append((p1, p2, p3, p4))
return rectangles
def rotate_point(point, center, angle):
# rotation
angle = math.radians(angle)
x = point[0] - center[0]
y = point[1] - center[1]
x1 = x * math.cos(angle) - y * math.sin(angle)
y1 = x * math.sin(angle) + y * math.cos(angle)
x1 += center[0]
y1 += center[1]
return int(x1), int(y1)
class T3DataSet(Dataset):
def __init__(
self,
json_path,
max_lines=5,
max_chars=20,
place_holder='*',
font_path='./font/Arial_Unicode.ttf',
caption_pos_prob=1.0,
mask_pos_prob=1.0,
mask_img_prob=0.5,
for_show=False,
using_dlc=False,
glyph_scale=1,
percent=1.0,
debug=False,
wm_thresh=1.0,
):
assert isinstance(json_path, (str, list))
if isinstance(json_path, str):
json_path = [json_path]
data_list = []
self.using_dlc = using_dlc
self.max_lines = max_lines
self.max_chars = max_chars
self.place_holder = place_holder
self.font = ImageFont.truetype(font_path, size=60)
self.caption_pos_porb = caption_pos_prob
self.mask_pos_prob = mask_pos_prob
self.mask_img_prob = mask_img_prob
self.for_show = for_show
self.glyph_scale = glyph_scale
self.wm_thresh = wm_thresh
for jp in json_path:
data_list += self.load_data(jp, percent)
self.data_list = data_list
print(f'All dataset loaded, imgs={len(self.data_list)}')
self.debug = debug
if self.debug:
self.tmp_items = [i for i in range(100)]
def load_data(self, json_path, percent):
tic = time.time()
content = load(json_path)
d = []
count = 0
wm_skip = 0
max_img = len(content['data_list']) * percent
for gt in content['data_list']:
if len(d) > max_img:
break
if 'wm_score' in gt and gt['wm_score'] > self.wm_thresh: # wm_score > thresh will be skiped as an img with watermark
wm_skip += 1
continue
data_root = content['data_root']
if self.using_dlc:
data_root = data_root.replace('/data/vdb', '/mnt/data', 1)
img_path = os.path.join(data_root, gt['img_name'])
info = {}
info['img_path'] = img_path
info['caption'] = gt['caption'] if 'caption' in gt else ''
if self.place_holder in info['caption']:
count += 1
info['caption'] = info['caption'].replace(self.place_holder, " ")
if 'annotations' in gt:
polygons = []
invalid_polygons = []
texts = []
languages = []
pos = []
for annotation in gt['annotations']:
if len(annotation['polygon']) == 0:
continue
if 'valid' in annotation and annotation['valid'] is False:
invalid_polygons.append(annotation['polygon'])
continue
polygons.append(annotation['polygon'])
texts.append(annotation['text'])
languages.append(annotation['language'])
if 'pos' in annotation:
pos.append(annotation['pos'])
info['polygons'] = [np.array(i) for i in polygons]
info['invalid_polygons'] = [np.array(i) for i in invalid_polygons]
info['texts'] = texts
info['language'] = languages
info['pos'] = pos
d.append(info)
print(f'{json_path} loaded, imgs={len(d)}, wm_skip={wm_skip}, time={(time.time()-tic):.2f}s')
if count > 0:
print(f"Found {count} image's caption contain placeholder: {self.place_holder}, change to ' '...")
return d
def __getitem__(self, item):
item_dict = {}
if self.debug: # sample fixed items
item = self.tmp_items.pop()
print(f'item = {item}')
cur_item = self.data_list[item]
# img
target = np.array(Image.open(cur_item['img_path']).convert('RGB'))
if target.shape[0] != 512 or target.shape[1] != 512:
target = cv2.resize(target, (512, 512))
target = (target.astype(np.float32) / 127.5) - 1.0
item_dict['img'] = target
# caption
item_dict['caption'] = cur_item['caption']
item_dict['glyphs'] = []
item_dict['gly_line'] = []
item_dict['positions'] = []
item_dict['texts'] = []
item_dict['language'] = []
item_dict['inv_mask'] = []
texts = cur_item.get('texts', [])
if len(texts) > 0:
idxs = [i for i in range(len(texts))]
if len(texts) > self.max_lines:
sel_idxs = random.sample(idxs, self.max_lines)
unsel_idxs = [i for i in idxs if i not in sel_idxs]
else:
sel_idxs = idxs
unsel_idxs = []
if len(cur_item['pos']) > 0:
pos_idxs = [cur_item['pos'][i] for i in sel_idxs]
else:
pos_idxs = [-1 for i in sel_idxs]
item_dict['caption'] = get_caption_pos(item_dict['caption'], pos_idxs, self.caption_pos_porb, self.place_holder)
item_dict['polygons'] = [cur_item['polygons'][i] for i in sel_idxs]
item_dict['texts'] = [cur_item['texts'][i][:self.max_chars] for i in sel_idxs]
item_dict['language'] = [cur_item['language'][i] for i in sel_idxs]
# glyphs
for idx, text in enumerate(item_dict['texts']):
gly_line = draw_glyph(self.font, text)
glyphs = draw_glyph2(self.font, text, item_dict['polygons'][idx], scale=self.glyph_scale)
item_dict['glyphs'] += [glyphs]
item_dict['gly_line'] += [gly_line]
# mask_pos
for polygon in item_dict['polygons']:
item_dict['positions'] += [self.draw_pos(polygon, self.mask_pos_prob)]
# inv_mask
invalid_polygons = cur_item['invalid_polygons'] if 'invalid_polygons' in cur_item else []
if len(texts) > 0:
invalid_polygons += [cur_item['polygons'][i] for i in unsel_idxs]
item_dict['inv_mask'] = self.draw_inv_mask(invalid_polygons)
item_dict['hint'] = self.get_hint(item_dict['positions'])
if random.random() < self.mask_img_prob:
# randomly generate 0~3 masks
box_num = random.randint(0, 3)
boxes = generate_random_rectangles(512, 512, box_num)
boxes = np.array(boxes)
pos_list = item_dict['positions'].copy()
for i in range(box_num):
pos_list += [self.draw_pos(boxes[i], self.mask_pos_prob)]
mask = self.get_hint(pos_list)
masked_img = target*(1-mask)
else:
masked_img = np.zeros_like(target)
item_dict['masked_img'] = masked_img
if self.for_show:
item_dict['img_name'] = os.path.split(cur_item['img_path'])[-1]
return item_dict
if len(texts) > 0:
del item_dict['polygons']
# padding
n_lines = min(len(texts), self.max_lines)
item_dict['n_lines'] = n_lines
n_pad = self.max_lines - n_lines
if n_pad > 0:
item_dict['glyphs'] += [np.zeros((512*self.glyph_scale, 512*self.glyph_scale, 1))] * n_pad
item_dict['gly_line'] += [np.zeros((80, 512, 1))] * n_pad
item_dict['positions'] += [np.zeros((512, 512, 1))] * n_pad
item_dict['texts'] += [' '] * n_pad
item_dict['language'] += [' '] * n_pad
return item_dict
def __len__(self):
return len(self.data_list)
def draw_inv_mask(self, polygons):
img = np.zeros((512, 512))
for p in polygons:
pts = p.reshape((-1, 1, 2))
cv2.fillPoly(img, [pts], color=255)
img = img[..., None]
return img/255.
def draw_pos(self, ploygon, prob=1.0):
img = np.zeros((512, 512))
rect = cv2.minAreaRect(ploygon)
w, h = rect[1]
small = False
if w < 20 or h < 20:
small = True
if random.random() < prob:
pts = ploygon.reshape((-1, 1, 2))
cv2.fillPoly(img, [pts], color=255)
# 10% dilate / 10% erode / 5% dilatex2 5% erodex2
random_value = random.random()
kernel = np.ones((3, 3), dtype=np.uint8)
if random_value < 0.7:
pass
elif random_value < 0.8:
img = cv2.dilate(img.astype(np.uint8), kernel, iterations=1)
elif random_value < 0.9 and not small:
img = cv2.erode(img.astype(np.uint8), kernel, iterations=1)
elif random_value < 0.95:
img = cv2.dilate(img.astype(np.uint8), kernel, iterations=2)
elif random_value < 1.0 and not small:
img = cv2.erode(img.astype(np.uint8), kernel, iterations=2)
img = img[..., None]
return img/255.
def get_hint(self, positions):
if len(positions) == 0:
return np.zeros((512, 512, 1))
return np.sum(positions, axis=0).clip(0, 1)
if __name__ == '__main__':
'''
Run this script to show details of your dataset, such as ocr annotations, glyphs, prompts, etc.
'''
from tqdm import tqdm
from matplotlib import pyplot as plt
import shutil
show_imgs_dir = 'show_results'
show_count = 50
if os.path.exists(show_imgs_dir):
shutil.rmtree(show_imgs_dir)
os.makedirs(show_imgs_dir)
plt.rcParams['axes.unicode_minus'] = False
json_paths = [
'/path/of/your/dataset/data1.json',
'/path/of/your/dataset/data2.json',
# ...
]
dataset = T3DataSet(json_paths, for_show=True, max_lines=20, glyph_scale=2, mask_img_prob=1.0, caption_pos_prob=0.0)
train_loader = DataLoader(dataset=dataset, batch_size=1, shuffle=False, num_workers=0)
pbar = tqdm(total=show_count)
for i, data in enumerate(train_loader):
if i == show_count:
break
img = ((data['img'][0].numpy() + 1.0) / 2.0 * 255).astype(np.uint8)
masked_img = ((data['masked_img'][0].numpy() + 1.0) / 2.0 * 255)[..., ::-1].astype(np.uint8)
cv2.imwrite(os.path.join(show_imgs_dir, f'plots_{i}_masked.jpg'), masked_img)
if 'texts' in data and len(data['texts']) > 0:
texts = [x[0] for x in data['texts']]
img = show_bbox_on_image(Image.fromarray(img), data['polygons'], texts)
cv2.imwrite(os.path.join(show_imgs_dir, f'plots_{i}.jpg'), np.array(img)[..., ::-1])
with open(os.path.join(show_imgs_dir, f'plots_{i}.txt'), 'w') as fin:
fin.writelines([data['caption'][0]])
all_glyphs = []
for k, glyphs in enumerate(data['glyphs']):
cv2.imwrite(os.path.join(show_imgs_dir, f'plots_{i}_glyph_{k}.jpg'), glyphs[0].numpy().astype(np.int32)*255)
all_glyphs += [glyphs[0].numpy().astype(np.int32)*255]
cv2.imwrite(os.path.join(show_imgs_dir, f'plots_{i}_allglyphs.jpg'), np.sum(all_glyphs, axis=0))
for k, gly_line in enumerate(data['gly_line']):
cv2.imwrite(os.path.join(show_imgs_dir, f'plots_{i}_gly_line_{k}.jpg'), gly_line[0].numpy().astype(np.int32)*255)
for k, position in enumerate(data['positions']):
if position is not None:
cv2.imwrite(os.path.join(show_imgs_dir, f'plots_{i}_pos_{k}.jpg'), position[0].numpy().astype(np.int32)*255)
cv2.imwrite(os.path.join(show_imgs_dir, f'plots_{i}_hint.jpg'), data['hint'][0].numpy().astype(np.int32)*255)
cv2.imwrite(os.path.join(show_imgs_dir, f'plots_{i}_inv_mask.jpg'), np.array(img)[..., ::-1]*(1-data['inv_mask'][0].numpy().astype(np.int32)))
pbar.update(1)
pbar.close()