-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
74 lines (56 loc) · 2.28 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
os.system('git clone https://github.com/facebookresearch/detectron2.git')
os.system("git clone https://github.com/microsoft/unilm.git")
os.system('pip install -e detectron2')
import sys
sys.path.append("unilm")
sys.path.append("detectron2")
from unilm.dit.object_detection.ditod import add_vit_config
import torch
import cv2
from detectron2.config import CfgNode as CN
from detectron2.config import get_cfg
from detectron2.utils.visualizer import ColorMode, Visualizer
from detectron2.data import MetadataCatalog
from detectron2.engine import DefaultPredictor
import gradio as gr
cfg = get_cfg()
add_vit_config(cfg)
cfg.merge_from_file("cascade_dit_base.yml")
cfg.MODEL.WEIGHTS = "publaynet_dit-b_cascade.pth"
cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
predictor = DefaultPredictor(cfg)
def analyze_image(img):
md = MetadataCatalog.get(cfg.DATASETS.TEST[0])
if cfg.DATASETS.TEST[0] == 'icdar2019_test':
md.set(thing_classes=["table"])
else:
md.set(thing_classes=["text", "title", "list", "table", "figure"])
output = predictor(img)["instances"]
# Filter instances to keep only those corresponding to tables
table_instances = output[output.pred_classes == md.thing_classes.index("table")]
v = Visualizer(img[:, :, ::-1],
md,
scale=1.0,
instance_mode=ColorMode.SEGMENTATION)
# Draw instance predictions for tables only
result = v.draw_instance_predictions(table_instances.to("cpu"))
result_image = result.get_image()[:, :, ::-1]
# Get bounding box details
bbox_details = []
for i in range(len(table_instances)):
instance = table_instances[i]
bbox = instance.pred_boxes.tensor.cpu().numpy().tolist()
score = instance.scores.cpu().numpy().item()
bbox_details.append({"bbox": bbox, "score": score})
return result_image, bbox_details
title = " Table Detection with DiT"
css = ".output-image, .input-image, .image-preview {height: 600px !important}"
iface = gr.Interface(
fn=analyze_image,
inputs=[gr.Image(type="numpy", label="document image")],
outputs=[gr.Image(type="numpy", label="detected tables"), gr.JSON(label="bounding box details")],
title=title,
css=css,
)
iface.launch(debug=True, share=True)