-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathprocess_cifar.py
119 lines (99 loc) · 4.25 KB
/
process_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Modified from From Taco Cohen's Github: https://github.com/tscohen/gconv_experiments
import os, argparse
import numpy as np
import cPickle as pickle
parser = argparse.ArgumentParser(description='Process CIFAR-10')
parser.add_argument('-d','--data', help='Directory containing cifar-10-batches-py',
type=str, required=True)
opt = parser.parse_args()
class PCA(object):
def __init__(self, D, n_components):
self.n_components = n_components
self.U, self.S, self.m = self.fit(D, n_components)
def fit(self, D, n_components):
"""
The computation works as follows:
The covariance is C = 1/(n-1) * D * D.T
The eigendecomp of C is: C = V Sigma V.T
Let Y = 1/sqrt(n-1) * D
Let U S V = svd(Y),
Then the columns of U are the eigenvectors of:
Y * Y.T = C
And the singular values S are the sqrts of the eigenvalues of C
We can apply PCA by multiplying by U.T
"""
# We require scaled, zero-mean data to SVD,
# But we don't want to copy or modify user data
m = np.mean(D, axis=1)[:, np.newaxis]
D -= m
D *= 1.0 / np.sqrt(D.shape[1] - 1)
U, S, V = np.linalg.svd(D, full_matrices=False)
D *= np.sqrt(D.shape[1] - 1)
D += m
return U[:, :n_components], S[:n_components], m
def transform(self, D, whiten=False, ZCA=False,
regularizer=10 ** (-5)):
"""
We want to whiten, which can be done by multiplying by Sigma^(-1/2) U.T
Any orthogonal transformation of this is also white,
and when ZCA=True we choose:
U Sigma^(-1/2) U.T
"""
if whiten:
# Compute Sigma^(-1/2) = S^-1,
# with smoothing for numerical stability
Sinv = 1.0 / (self.S + regularizer)
if ZCA:
# The ZCA whitening matrix
W = np.dot(self.U,
np.dot(np.diag(Sinv),
self.U.T))
else:
# The whitening matrix
W = np.dot(np.diag(Sinv), self.U.T)
else:
W = self.U.T
# Transform
return np.dot(W, D - self.m)
def proc_cifar(loc):
def _load_batch(fn):
fo = open(fn, 'rb')
d = pickle.load(fo)
fo.close()
return d['data'].reshape(-1, 3, 32, 32), d['labels']
def normalize(data, eps=1e-8):
data -= data.mean(axis=(1, 2, 3), keepdims=True)
std = np.sqrt(data.var(axis=(1, 2, 3), ddof=1, keepdims=True))
std[std < eps] = 1.
data /= std
return data
proc_loc = 'proc'
if os.path.exists(proc_loc):
print 'Found existing proc, delete the proc folder if you want to run again'
return
os.mkdir(proc_loc)
print '[Loading]'
train_fns = [os.path.join(loc, 'data_batch_' + str(i)) for i in range(1, 6)]
train_batches = [_load_batch(fn) for fn in train_fns]
test_batch = _load_batch(os.path.join(loc, 'test_batch'))
tx = np.vstack([train_batches[i][0] for i in range(5)]).astype('float32')
ty = np.vstack([train_batches[i][1] for i in range(5)]).flatten()
vx, vy = test_batch[0].astype('float32'), test_batch[1]
tx, vx = normalize(tx), normalize(vx)
txf, vxf = tx.reshape(tx.shape[0], -1).T, vx.reshape(vx.shape[0], -1).T
print '[Whitening]'
pca = PCA(D=txf, n_components=txf.shape[1])
tx = pca.transform(D=txf, whiten=True, ZCA=True).T.reshape(tx.shape)
vx = pca.transform(D=vxf, whiten=True, ZCA=True).T.reshape(vx.shape)
print '[Saving]'
np.savez(os.path.join(proc_loc, 'cifar10-train.npz'), data=tx, labels=ty)
np.savez(os.path.join(proc_loc, 'cifar10-test.npz'), data=vx, labels=vy)
print '[Finished]'
loc = opt.data
assert os.path.exists(loc), 'loc does not exist: %s' % loc
raw_loc = os.path.join(loc, 'cifar-10-batches-py')
assert os.path.exists(raw_loc), 'Could not find CIFAR10 data. Download cifar-10 from ' \
'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz,\n' \
'Extract the data with: tar zxvf cifar-10-python.tar.gz\n' \
'And move the cifar-10-batches-py folder to loc (' + loc + ').'
proc_cifar(raw_loc)