-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweighted_lis.cpp
646 lines (594 loc) · 19.7 KB
/
weighted_lis.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
#include <iostream>
#include <fstream>
#include <cstdio>
#include <stdlib.h>
#include <cmath>
#include <vector>
#include <algorithm>
#include <ctime>
#include <queue>
#include <string>
#include "parlay/sequence.h"
#include "parlay/parallel.h"
#include "parlay/primitives.h"
#include "parlay/utilities.h"
#include <cstdlib>
#include <cstdint>
#include <cassert>
#include <cstring>
#include <iterator>
#include <functional>
#include <memory>
#include <chrono>
#include <atomic>
#include <typeinfo>
#include "parlay/alloc.h"
#include "interval.hpp"
#include "std.hpp"
#include "interval_array.hpp"
#include "init_seq.cpp"
using namespace std;
using data_type1 = uint64_t;
using data_type = unsigned long long;
#include "basic_tools.h"
size_t ARRAY_SIZE = 1000000000;
float WEIGHT_LIMIT = 10;
size_t ARRAY_LIMIT = 1e6;
size_t LIS_LENGTH = 10;
constexpr size_t SIZE_LIMIT = 4294967295;
constexpr data_type LOWER_LIMIT = 0;
constexpr data_type UPPER_LIMIT = 1e9;
constexpr size_t GRANULARITY = 1024;
constexpr size_t DEPTH_GRANULARITY = 16;//1e9-19
constexpr size_t BATCH_SIZE = 1e4;
enum Pattern { rando = 0, line, segment, pure };
timer t_seq0;
timer t_seq;
timer t_seq1;
timer t_para;
timer t_buildTree;
timer t_findPivot;
timer t_handleWeight;
timer t_queryLeft;
timer t_update;
timer t_prepare;
timer t_unweighted;
timer t_tmp;
typedef uint64_t nid_t;
inline constexpr uint32_t get_y(nid_t u){
return uint32_t(u>>32);
}
inline constexpr uint32_t get_x(nid_t u){
return uint32_t(u);
}
inline constexpr nid_t gen_nid(uint32_t x, uint32_t y){
return (nid_t(y)<<32)|x;
}
inline nid_t gen_nid2(uint32_t x, uint32_t y){
return (nid_t(y)<<32)|x;
}
long *f = new long[ARRAY_SIZE];
auto * a = new nid_t[ARRAY_SIZE];
template<typename E>
struct U_inner{
const static constexpr bool is_nested_alloc = false;
const static constexpr bool is_nested = false;
typedef long type_data; // the maximum DP value
static bool compare(const E lhs, const E rhs){
return lhs<rhs;
}
static type_data f(const type_data &l, const type_data &r){
if(l<=0 && r<=0) return l+r;
if(l>=0 && r>=0) return std::max(l,r);
return l<0?l:r;
}
static type_data g(const E &element, ...){
return ::f[get_x(element)]; // TODO
}
};
template<typename E>
struct U_outer{
typedef interval_array<nid_t, U_inner> type_data;
const static constexpr bool is_nested_alloc = true;
const static constexpr bool is_nested = true;
static bool compare(const E lhs, const E rhs){
return get_x(lhs)<get_x(rhs);
}
static type_data f(const type_data &ld, const type_data &rd){
return type_data();
}
static type_data g(const E &element){
return {element};
}
static auto g(const E &element, bool){
return interval_array<nid_t, U_inner>{element};
}
template<typename Iter>
static void update(type_data &data, Iter begin, Iter end)
{
data.update(begin, end, [](nid_t&, const nid_t&){});
}
};
template <typename T>
struct allocator_wrapper/* : pbbs::type_allocator<T>*/
{
static T* allocate(std::size_t n)
{
if(n==1)
return pbbs::type_allocator<T>::alloc();
assert(n==1);
return new T[n];
}
void deallocate(T* p, std::size_t n)
{
assert(n==1);
pbbs::type_allocator<T>::free(p);
}
};
size_t buildTree(sequence<data_type> &arr, sequence<data_type> &arr2, size_t size){
size_t depth = ceil(log2(size));
size_t newSize = pow(2, depth+1)-1;
size_t s = pow(2, depth) - 1;
arr.resize(newSize);
par_for(size_t i=s; i<s+size; ++i){
arr[i]=arr2[i-s];
}
par_for(size_t i=s+size; i<newSize; ++i){
arr[i]=ULLONG_MAX;
}
par_for(size_t i=0; i<s; ++i){
arr[i]=0;
}
return depth;
}
data_type buildMinTreeSeq(sequence<data_type> &nodeArray, size_t root, size_t secondLastEnd){
size_t leftChild = 2*root+1;
size_t rightChild = 2*root+2;
if(root > secondLastEnd){
return min(nodeArray[leftChild], nodeArray[rightChild]);
}
nodeArray[leftChild] = buildMinTreeSeq(nodeArray, leftChild, secondLastEnd);
nodeArray[rightChild] = buildMinTreeSeq(nodeArray, rightChild, secondLastEnd);
return min(nodeArray[leftChild], nodeArray[rightChild]);
}
data_type buildMinTree(sequence<data_type> &nodeArray, size_t root, size_t secondLastEnd, size_t res){
size_t leftChild = 2*root+1;
size_t rightChild = 2*root+2;
if(root > secondLastEnd){
return min(nodeArray[leftChild], nodeArray[rightChild]);
}
if(root<res){
parlay::par_do(
[&]() { nodeArray[leftChild] = buildMinTree(nodeArray, leftChild, secondLastEnd, res); },
[&]() { nodeArray[rightChild] = buildMinTree(nodeArray, rightChild, secondLastEnd, res); });
}else{
nodeArray[leftChild] = buildMinTreeSeq(nodeArray, leftChild, secondLastEnd);
nodeArray[rightChild] = buildMinTreeSeq(nodeArray, rightChild, secondLastEnd);
}
return min(nodeArray[leftChild], nodeArray[rightChild]);
}
data_type findPivotSeq0(sequence<data_type> &nodeArray, sequence<size_t> &rankArray, size_t root, size_t internalEnd, data_type pre, size_t round){
if(nodeArray[root] == ULLONG_MAX){
return ULLONG_MAX;
}
if(root > internalEnd){
rankArray[root-internalEnd-1] = round;
return ULLONG_MAX;
}
size_t leftChild = 2*root+1;
size_t rightChild = 2*root+2;
if(nodeArray[root]==nodeArray[rightChild]){
if(nodeArray[leftChild]<=pre&&nodeArray[leftChild]!=ULLONG_MAX){
nodeArray[rightChild] = findPivotSeq0(nodeArray, rankArray, rightChild, internalEnd, nodeArray[leftChild], round);
nodeArray[leftChild] = findPivotSeq0(nodeArray, rankArray, leftChild, internalEnd, pre, round);
}
else{
nodeArray[rightChild] = findPivotSeq0(nodeArray, rankArray, rightChild, internalEnd, pre, round);
}
}else{
nodeArray[leftChild] = findPivotSeq0(nodeArray, rankArray, leftChild, internalEnd, pre, round);
}
return min(nodeArray[rightChild], nodeArray[leftChild]);
}
data_type findPivot(sequence<data_type> &nodeArray, sequence<size_t> &rankArray, size_t root, size_t internalEnd, data_type pre, size_t res, size_t round){
if(nodeArray[root] == ULLONG_MAX){
return ULLONG_MAX;
}
if(root>=res){
return findPivotSeq0(nodeArray, rankArray, root, internalEnd, pre, round);
}
size_t leftChild = 2*root+1;
size_t rightChild = 2*root+2;
if(nodeArray[root]==nodeArray[rightChild]){
if(nodeArray[leftChild]<=pre&&nodeArray[leftChild]!=ULLONG_MAX){
data_type lc = nodeArray[leftChild];
parlay::par_do(
[&]() { nodeArray[leftChild] = findPivot(nodeArray, rankArray, leftChild, internalEnd, pre, res, round); },
[&]() { nodeArray[rightChild] = findPivot(nodeArray, rankArray, rightChild, internalEnd, lc, res, round); });
}
else{
nodeArray[rightChild] = findPivot(nodeArray, rankArray, rightChild, internalEnd, pre, res, round);
}
}else{
nodeArray[leftChild] = findPivot(nodeArray, rankArray, leftChild, internalEnd, pre, res, round);
}
return min(nodeArray[leftChild], nodeArray[rightChild]);
}
size_t calWeight(sequence<data_type> &initialArray, sequence<size_t> &weightArray, sequence<size_t> &rankArray, size_t size, size_t rounds){
t_prepare.start();
auto * workset = new size_t[rounds+1];
parlay::sequence<pair<size_t,size_t>> indexReal(size);
par_for(size_t i=0; i<size; ++i){
f[i] = 0;
a[i] = gen_nid2(i, (uint32_t)initialArray[i]);
indexReal[i].first = rankArray[i];
indexReal[i].second = i;
}
interval<nid_t, U_outer, allocator_wrapper> q(a, a+size);
auto less = [&] (pair<size_t,size_t> A, pair<size_t,size_t> B) {
if(A.first == B.first) return A.second < B.second;
return A.first < B.first;};
parlay::sort_inplace(indexReal, less);
workset[0] = 0;
workset[rounds] = size;
uint32_t k = indexReal[0].second;
a[0] = gen_nid(k, (uint32_t)initialArray[k]);
par_for(size_t i=1; i<size; ++i){
k = indexReal[i].second;
a[i] = gen_nid(k, (uint32_t)initialArray[k]);
if(indexReal[i].first != indexReal[i-1].first){
workset[indexReal[i].first]=i;
}
}
t_prepare.stop();
for(size_t round = 0; round < rounds; ++round){
size_t begin = workset[round], end = workset[round+1];
t_queryLeft.start();
par_for(size_t i=begin; i<end; ++i){
const auto u = a[i];
const auto ind = get_x(u);
const auto r = q.query_left(u,[&,u](const auto &inner){
const auto r = inner.query_left(gen_nid(0,get_y(u)));
return r;
},
[](const auto &l, const auto &r){
if(l<0 && r<0)
return r;
if(l>=0 && r>=0) return std::max(l,r);
return l<0?l:r;
}
);
f[ind] = r + weightArray[ind];
}
t_queryLeft.stop();
t_update.start();
q.update(a+begin, a+end, [](nid_t&, const nid_t&){});
t_update.stop();
}
t_queryLeft.start();
const auto ans = q.query_left(size,[&,size](const auto &inner){
const auto r = inner.query_left(gen_nid(SIZE_LIMIT,SIZE_LIMIT));
return r;
},
[](const auto &l, const auto &r){
if(l<0 && r<0)
return r;
if(l>=0 && r>=0) return std::max(l,r);
return l<0?l:r;
}
);
t_queryLeft.stop();
return ans;
}
size_t runWeightedParallel(sequence<data_type> &initialArray, sequence<size_t> weightArray, size_t size, size_t gra=DEPTH_GRANULARITY){
sequence<data_type> nodeArray;
sequence<size_t> rankArray(size);
t_buildTree.start();
size_t depth = buildTree(nodeArray, initialArray, size);
size_t internalEnd = pow(2, depth) - 2;
size_t secondLastEnd = pow(2, depth-1) - 2;
size_t res = 0;
if(depth>gra) res = pow(2,depth-gra) -1;
nodeArray[0] = buildMinTree(nodeArray, 0, secondLastEnd, res);
t_buildTree.stop();
size_t rounds = 0;
while(nodeArray[0]!=ULLONG_MAX){
t_findPivot.start();
nodeArray[0] = findPivot(nodeArray, rankArray, 0, internalEnd, ULLONG_MAX, res, rounds);
t_findPivot.stop();
rounds++;
}
t_handleWeight.start();
size_t ans = calWeight(initialArray, weightArray, rankArray, size, rounds);
t_handleWeight.stop();
return ans;
}
int runWeightedSequential(sequence<data_type> &initialArray, sequence<size_t> &weightArray, size_t size){
auto ans = std::numeric_limits<int>::min();
AVL<zz> avl;
avl.insert(zz{ans,0});
for(uint32_t i=0; i<size; ++i)
{
int x = initialArray[i];
int k = avl.get_max(x)+weightArray[i];
if(k>ans) ans = k;
avl.insert(zz{x,k});
}
return ans;
}
data_type findPivotUnweightedSeq(data_type pre, sequence<data_type> &nodeArray, size_t root, size_t internalEnd){
if(nodeArray[root] == ULLONG_MAX || root > internalEnd){
return ULLONG_MAX;
}
size_t leftChild = 2*root+1;
size_t rightChild = 2*root+2;
if(nodeArray[root]==nodeArray[rightChild]){
if(nodeArray[leftChild]<=pre&&nodeArray[leftChild]!=ULLONG_MAX){
nodeArray[rightChild] = findPivotUnweightedSeq(nodeArray[leftChild], nodeArray, rightChild, internalEnd);
nodeArray[leftChild] = findPivotUnweightedSeq(pre, nodeArray, leftChild, internalEnd);
}
else{
nodeArray[rightChild] = findPivotUnweightedSeq(pre, nodeArray, rightChild, internalEnd);
}
}else{
nodeArray[leftChild] = findPivotUnweightedSeq(pre, nodeArray, leftChild, internalEnd);
}
return min(nodeArray[rightChild], nodeArray[leftChild]);
}
data_type findPivotUnweighted(data_type pre, sequence<data_type> &nodeArray, size_t root, size_t internalEnd, size_t res){
if(nodeArray[root] == ULLONG_MAX){
return ULLONG_MAX;
}
if(root>=res){
return findPivotUnweightedSeq(pre, nodeArray, root, internalEnd);
}
size_t leftChild = 2*root+1;
size_t rightChild = 2*root+2;
if(nodeArray[root]==nodeArray[rightChild]){
if(nodeArray[leftChild]<=pre&&nodeArray[leftChild]!=ULLONG_MAX){
data_type lc = nodeArray[leftChild];
parlay::par_do(
[&]() { nodeArray[leftChild] = findPivotUnweighted(pre, nodeArray, leftChild, internalEnd, res); },
[&]() { nodeArray[rightChild] = findPivotUnweighted(lc, nodeArray, rightChild, internalEnd, res); });
}
else{
nodeArray[rightChild] = findPivotUnweighted(pre, nodeArray, rightChild, internalEnd, res);
}
}else{
nodeArray[leftChild] = findPivotUnweighted(pre, nodeArray, leftChild, internalEnd, res);
}
return min(nodeArray[leftChild], nodeArray[rightChild]);
}
size_t runParallelUnweighted(sequence<data_type> nodeArray, size_t depth, size_t size, size_t gra){
size_t rounds = 0;
t_buildTree.start();
size_t internalEnd = pow(2, depth) - 2;
size_t secondLastEnd = pow(2, depth-1) - 2;
size_t res = 0;
if(depth>gra) res = pow(2,depth-gra) -1;
nodeArray[0] = buildMinTree(nodeArray, 0, secondLastEnd, res);
t_buildTree.stop();
while(nodeArray[0]!=ULLONG_MAX){
t_findPivot.start();
nodeArray[0] = findPivotUnweighted(ULLONG_MAX, nodeArray, 0, internalEnd, res);
t_findPivot.stop();
rounds++;
}
return rounds;
}
size_t runUnweightedSequential0(sequence<data_type> nodeArray, size_t depth, size_t size){
sequence<data_type> lis(size+1, 0);
size_t leafStart = pow(2, depth)-1;
lis[1] = nodeArray[leafStart];
size_t s = 1;
for(size_t i=1; i<size; ++i){
data_type x = nodeArray[leafStart+i];
if(x>lis[s])lis[++s]=x;
else{
size_t l=1, h=s, m;
while(l<=h){
m=(l+h)/2;
if(x>lis[m])l=m+1;
else h=m-1;
}
lis[l] = x;
}
}
return s;
}
int runUnweightedSequential(sequence<data_type> nodeArray, size_t depth){
int rounds = 0;
size_t secondLastEnd = pow(2, depth-1) - 2;
size_t internalEnd = pow(2, depth) - 2;
nodeArray[0] = buildMinTreeSeq(nodeArray, 0, secondLastEnd);
while(nodeArray[0]!=ULLONG_MAX){
nodeArray[0] = findPivotUnweightedSeq(ULLONG_MAX, nodeArray, 0, internalEnd);
rounds++;
}
return rounds;
}
int run_final_weighted(int ROUND, sequence<data_type> &initialArray, sequence<size_t> &weightArray, size_t size, size_t gra = DEPTH_GRANULARITY, bool seq = false){
if(seq){
t_seq.reset();
t_seq.start();
int ans1 = runWeightedSequential(initialArray, weightArray, size);
t_seq.stop();
//cout<<"ans\ttime"<<endl;
cout<<ans1<<"\t"<<t_seq.get_total()<<endl;
}else{
size_t ans = runWeightedParallel(initialArray, weightArray, size, gra);
t_buildTree.reset();
t_findPivot.reset();
t_handleWeight.reset();
t_prepare.reset();
t_queryLeft.reset();
t_update.reset();
t_para.reset();
t_para.start();
for(int i=0;i<ROUND;++i){
runWeightedParallel(initialArray, weightArray, size, gra);
}
t_para.stop();
//cout<<"ans\ttotal_time\tfind_pivot\thandle_weight\tprepare\t\tquery_left\tupdate"<<endl;
cout<< ans <<"\t"<<t_para.get_total()/ROUND;
cout<<"\t"<<t_findPivot.get_total()/ROUND<<"\t"<<t_handleWeight.get_total()/ROUND;
cout<<"\t"<<t_prepare.get_total()/ROUND<<"\t"<<t_queryLeft.get_total()/ROUND<<"\t"<<t_update.get_total()/ROUND;
cout<<endl;
}
return 0;
}
int run_final_unweighted(int ROUND, sequence<data_type> &initialArray, size_t size, size_t gra = DEPTH_GRANULARITY, bool seq = false){
sequence<data_type> nodeArray;
size_t depth = buildTree(nodeArray, initialArray, size);
if(seq){
//array
t_seq0.reset();
t_seq0.start();
int ans0 = runUnweightedSequential0(nodeArray, depth, size);
t_seq0.stop();
//work
t_seq.reset();
t_seq.start();
int ans2 = runUnweightedSequential(nodeArray, depth);
t_seq.stop();
//cout<<"greedy\t"<< ans0 <<"\t"<<t_seq0.get_total()<<endl;
//cout<<"seq\t"<< ans2 <<"\t"<<t_seq.get_total()<<endl;
cout<< ans0 <<"\t"<<t_seq0.get_total()<<"\t"<<t_seq.get_total()<<endl;
}else{
size_t ans = runParallelUnweighted(nodeArray, depth, size, gra);
t_buildTree.reset();
t_findPivot.reset();
t_para.reset();
t_para.start();
for(int i=0;i<ROUND;++i){
runParallelUnweighted(nodeArray, depth, size, gra);
}
t_para.stop();
//cout<<"ans\ttotal_time\tfind_pivot\tbuild_tree"<<endl;
cout<< ans <<"\t"<<t_para.get_total()/ROUND<<"\t"<<t_findPivot.get_total()/ROUND<<"\t"<<t_buildTree.get_total()/ROUND;
cout<<endl;
}
return 0;
}
int main(int argc, char* argv[]){
int ROUND = 3;
if (argc == 1) {
fprintf(
stderr,
"Usage: %s [-i input_file] [-a array_size] [-u array_limit] [-l lis_length] [-e weight_limit] [-r test_round] [-g generated_input] [-p data_pattern] [-w] [-s]\n"
"Options:\n"
"\t-i,\tif you have generated input file, please type in the file path\n"
"\t-a,\tsize of input array\n"
"\t-u,\tthe upper limit of array values, if autogenerated\n"
"\t-l,\tthe length of LIS, if autogenerated\n"
"\t-e,\tneed to generate weight, please set weight limit\n"
"\t-r,\tnumebr of test round\n"
"\t-g,\tthe filename of the autogenerated input data\n"
"\t-w,\tweighted LIS\n"
"\t-s,\trun in sequential\n",
"\t-p,\tdata pattern: line, segment or random\n",
argv[0]);
return 0;
}
ifstream infile;
string ofs;
bool gval1=false,gval2=false;
bool gval3=false;
bool weighted=false, seq=false;
Pattern pat = rando;
size_t offset=10;
char c;
while ((c = getopt(argc, argv, "i:a:u:e:r:a:l:g:p:o:ws")) != -1) {
switch (c) {
case 'i':
infile.open(optarg, ifstream::in);
if(!infile.is_open()){
cout<<"No Input File"<<endl;
return 0;
}
break;
case 'a':
ARRAY_SIZE = atoi(optarg);
break;
case 'u':
ARRAY_LIMIT = atoi(optarg);
break;
case 'l':
gval1 = true;
LIS_LENGTH = atoi(optarg);
break;
case 'e':
gval2 = true;
WEIGHT_LIMIT = atof(optarg);
break;
case 'r':
ROUND = atoi(optarg);
break;
case 'g':
gval3 = true;
ofs = optarg;
break;
case 'w':
weighted = true;
break;
case 's':
seq = true;
break;
case 'o':
offset = atoi(optarg);
break;
case 'p':
gval1 = true;
if (!strcmp(optarg, "line")) {
pat = line;
} else if (!strcmp(optarg, "segment")) {
pat = segment;
} else if (!strcmp(optarg, "random")) {
pat = rando;
} else if (!strcmp(optarg, "pure")) {
pat = pure;
} else {
fprintf(stderr, "Error: Unknown pattern %s\n", optarg);
exit(EXIT_FAILURE);
}
break;
default:
fprintf(stderr, "Error: Unknown option %c\n", optopt);
exit(EXIT_FAILURE);
}
}
ARRAY_LIMIT = max(ARRAY_LIMIT, LIS_LENGTH);
pbbs::type_allocator<interval<nid_t, U_outer, allocator_wrapper>::treap_node>::reserve(ARRAY_SIZE);
sequence<data_type> initialArray(ARRAY_SIZE);
if(gval1){
if(pat == rando)initializeRandomArray(initialArray, ARRAY_SIZE, ARRAY_LIMIT, LIS_LENGTH, 0.001);
if(pat == line)initializeLineArray(initialArray, ARRAY_SIZE, ARRAY_LIMIT, LIS_LENGTH, 0.001, offset);
if(pat == segment)initializeSegmentArray(initialArray, ARRAY_SIZE, ARRAY_LIMIT, LIS_LENGTH, 0.001, offset);
if(pat == pure)initializePureRandomArray(initialArray, ARRAY_SIZE, ARRAY_LIMIT, LIS_LENGTH, 0.001);
}else{
for(size_t i=0; i<ARRAY_SIZE; ++i)
infile>>initialArray[i];
}
if(weighted){
sequence<size_t> weightArray(ARRAY_SIZE);
if(gval2){
initializeRandomWeight(weightArray, ARRAY_SIZE, WEIGHT_LIMIT, 0.001);
}else{
for(size_t i=0; i<ARRAY_SIZE; ++i)
infile>>weightArray[i];
}
run_final_weighted(ROUND, initialArray, weightArray, ARRAY_SIZE, DEPTH_GRANULARITY, seq);
if(gval3){
ofstream myfile(ofs, std::ofstream::out);
if(gval1)for(size_t i=0;i<ARRAY_SIZE;++i)myfile<<initialArray[i]<<"\n";
if(gval2)for(size_t i=0;i<ARRAY_SIZE;++i)myfile<<weightArray[i]<<"\n";
}
return 0;
}
if(gval3){
ofstream myfile(ofs, std::ofstream::out);
if(gval1)for(size_t i=0;i<ARRAY_SIZE;++i)myfile<<initialArray[i]<<"\n";
}
run_final_unweighted(ROUND, initialArray, ARRAY_SIZE, DEPTH_GRANULARITY, seq);
return 0;
}