-
Notifications
You must be signed in to change notification settings - Fork 1
/
tests.R
86 lines (75 loc) · 3.15 KB
/
tests.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
############################################################################################
## ##
## An experimental evaluation of Deep Reinforcement Learning algorithms for HVAC control ##
## ##
## Authors: A. Manjavacas, A. Campoy, J. Jimenez, M. Molina, J. Gomez ##
## ##
## Contact: manjavacas@ugr.es ##
## ##
############################################################################################
library(tidyverse)
load_data <- function(path) {
read_csv(
path,
col_types = cols(
episode_num = col_integer(),
`length(timesteps)` = col_integer(),
`time_elapsed(seconds)` = col_integer()
)
)
}
# SAC Cool
SAC_cool_cool <-
load_data('data/data_eval_robustness/SAC_cool_cool/progress.csv') %>%
mutate(Agent = 'SAC',
Train = 'Cool',
Test = 'Cool') %>% slice_head(n = 20)
SAC_cool_mixed <-
load_data('data/data_eval_robustness/SAC_cool_mixed/progress.csv') %>%
mutate(Agent = 'SAC',
Train = 'Cool',
Test = 'Mixed') %>% slice_head(n = 20)
SAC_cool_hot <-
load_data('data/data_eval_robustness/SAC_cool_hot/progress.csv') %>%
mutate(Agent = 'SAC',
Train = 'Cool',
Test = 'Hot') %>% slice_head(n = 20)
# SAC Mixed
SAC_mixed_cool <-
load_data('data/data_eval_robustness/SAC_mixed_cool/progress.csv') %>%
mutate(Agent = 'SAC',
Train = 'Mixed',
Test = 'Cool') %>% slice_head(n = 20)
SAC_mixed_mixed <-
load_data('data/data_eval_robustness/SAC_mixed_mixed/progress.csv') %>%
mutate(Agent = 'SAC',
Train = 'Mixed',
Test = 'Mixed') %>% slice_head(n = 20)
SAC_mixed_hot <-
load_data('data/data_eval_robustness/SAC_mixed_hot/progress.csv') %>%
mutate(Agent = 'SAC',
Train = 'Mixed',
Test = 'Hot') %>% slice_head(n = 20)
# SAC Hot
SAC_hot_cool <-
load_data('data/data_eval_robustness/SAC_hot_cool/progress.csv') %>%
mutate(Agent = 'SAC',
Train = 'Hot',
Test = 'Cool') %>% slice_head(n = 20)
SAC_hot_mixed <-
load_data('data/data_eval_robustness/SAC_hot_mixed/progress.csv') %>%
mutate(Agent = 'SAC',
Train = 'Hot',
Test = 'Mixed') %>% slice_head(n = 20)
SAC_hot_hot <-
load_data('data/data_eval_robustness/SAC_hot_hot/progress.csv') %>%
mutate(Agent = 'SAC',
Train = 'Hot',
Test = 'Hot') %>% slice_head(n = 20)
# Tests
wilcox.test(SAC_cool_cool$mean_reward, SAC_mixed_cool$mean_reward)$p.value
wilcox.test(SAC_cool_cool$mean_reward, SAC_hot_cool$mean_reward)$p.value
wilcox.test(SAC_mixed_mixed$mean_reward, SAC_cool_mixed$mean_reward)$p.value
wilcox.test(SAC_mixed_mixed$mean_reward, SAC_hot_mixed$mean_reward)$p.value
wilcox.test(SAC_hot_hot$mean_reward, SAC_cool_hot$mean_reward)$p.value
wilcox.test(SAC_hot_hot$mean_reward, SAC_mixed_hot$mean_reward)$p.value