@@ -150,23 +150,21 @@ def __init__(self, size, matrix_normalised=False):
150
150
self .matrix_normalised = matrix_normalised
151
151
152
152
def forward (self , coords ):
153
- # return self.get_distogram(img, self.size)
154
- return self . get_distogram ( coords , matrix_normalised = self .matrix_normalised )
153
+ return self .get_distogram (coords ,
154
+ matrix_normalised = self .matrix_normalised )
155
155
156
156
def __repr__ (self ):
157
157
return self .__class__ .__name__ + f"(size={ self .size } )"
158
158
159
159
def get_distogram (self , coords , matrix_normalised = False ):
160
+
160
161
xii , yii = coords
161
- # distograms.append(euclidean_distances(np.array([xii,yii]).T))
162
- distance_matrix = euclidean_distances (np .array ([xii , yii ]).T ) / self .size ** 0.5
163
- norm = np .linalg .norm (distance_matrix , "fro" )
162
+ distance_matrix = euclidean_distances (np .array ([xii , yii ]).T )
164
163
# Fro norm is the same as the L2 norm, but for positive semi-definite matrices
165
- # norm = np.linalg.norm(distance_matrix)
166
- # norm_distance_matrix = distance_matrix / self.size**0.5
167
164
if matrix_normalised :
168
- return distance_matrix / norm
169
- return distance_matrix
165
+ return distance_matrix / np .linalg .norm (distance_matrix , "fro" )
166
+ if not matrix_normalised :
167
+ return distance_matrix / np .linalg .norm ([self .size , self .size ])
170
168
171
169
172
170
class ImageToCoords (torch .nn .Module ):
0 commit comments