-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_finetune.py
208 lines (165 loc) · 7.85 KB
/
main_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import json
import logging
import datetime
import random
import time
import wandb
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.multiprocessing as mp
from torch.nn import CrossEntropyLoss
from functools import partial
from pathlib import Path
from timm.data.mixup import Mixup
import mae.util.lr_decay as lrd
from mae.util import misc
from mae.util.misc import NativeScalerWithGradNormCount as NativeScaler
from util.data import get_data
from util.default_args import get_default_parser
from util.transforms import smooth_one_hot
from util.vit import get_vit
from util.dist import get_ip_address, get_open_port, init_distributed_mode, remove_on_master, save_model
from train_engine import train_one_epoch, evaluate
from loss import SoftTargetInfoNCE, InfoNCE, SoftTargetCrossEntropy
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def main(rank, world_size, args):
args.rank = rank
args.gpu = "cuda:{}".format(rank)
init_distributed_mode(args)
logger.info("Rank %d, world_size %d" % (rank, world_size))
logger.info("Use GPU: {} for training".format(args.gpu))
logger.info('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
logger.info("{}".format(args).replace(', ', ',\n'))
seed = args.seed + misc.get_rank()
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
data_loader_train, data_loader_val, train_labels = get_data(args)
if misc.get_rank() == 0 and args.log_dir is not None and not args.eval:
os.makedirs(args.log_dir, exist_ok=True)
# Set up mixup
mixup_fn = None
label_mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
logger.info("Mixup is activated!")
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.nb_classes)
# Set up label smoothing
smoothing_fn = None
if not mixup_active and args.smoothing > 0:
logger.info("Label smoothing is activated!")
smoothing_fn = partial(smooth_one_hot, num_classes=args.nb_classes, smoothing=args.smoothing)
if mixup_fn is None and smoothing_fn is None:
logger.info("Training with Xent! (no mixup and no label smoothing)")
device = torch.device(f"cuda:{rank}")
model = get_vit(args).to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
# build optimizer with layer-wise lr decay (lrd)
param_groups = lrd.param_groups_lrd(model_without_ddp, args.weight_decay,
no_weight_decay_list=model_without_ddp.no_weight_decay(),
layer_decay=args.layer_decay
)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr)
loss_scaler = NativeScaler()
args.loss_kwargs = {}
if 'NCE' in args.loss:
noise_probs = (torch.bincount(train_labels) / len(train_labels)).to(device)
args.loss_kwargs.update({'t': args.t, 'noise_probs': noise_probs})
elif args.loss == 'SoftTargetCrossEntropy':
args.loss_kwargs.update({'t': args.t})
criterion = eval(args.loss)(**args.loss_kwargs)
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
if misc.is_main_process():
logger.info("Model = %s" % str(model_without_ddp))
logger.info('number of params (M): %.2f' % (n_parameters / 1.e6))
logger.info("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
logger.info("actual lr: %.2e" % args.lr)
logger.info("accumulate grad iterations: %d" % args.accum_iter)
logger.info("effective batch size: %d" % eff_batch_size)
logger.info("criterion: %s" % str(criterion))
logger.info(f"Start training for {args.epochs} epochs")
start_time = time.time()
max_accuracy = 0.0
val_ckpt = None
if misc.is_main_process():
wandb.init(project=args.wandb_project, dir=args.log_dir, config=args, name=args.run_name + '_' + args.timestamp)
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad,
mixup_fn=mixup_fn,
smoothing_fn=smoothing_fn,
args=args,
train_labels=train_labels,
label_mixup_fn=label_mixup_fn
)
if args.output_dir and epoch % 25 == 0:
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
if epoch % args.eval_freq != 0:
continue
test_stats = evaluate(data_loader_val, model, device, epoch, criterion, args)
if misc.is_main_process():
logger.info(f"Accuracy of the network on the {len(data_loader_val.dataset)} test images: {test_stats['acc1']:.1f}%")
if max_accuracy < test_stats["acc1"]:
# Remove previous checkpoint and save model with best validation accuracy
remove_on_master(val_ckpt)
val_ckpt = save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, top1=test_stats["acc1"], top5=test_stats["acc5"])
max_accuracy = max(max_accuracy, test_stats["acc1"])
if misc.is_main_process():
logger.info(f'Max accuracy: {max_accuracy:.2f}%')
if misc.is_main_process():
wandb.log({'perf/test_acc1': test_stats['acc1'],
'perf/test_acc5': test_stats['acc5'],
'perf/test_loss': test_stats['loss']},
)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and misc.is_main_process():
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))
if misc.is_main_process():
wandb.finish()
torch.distributed.destroy_process_group()
if __name__ == '__main__':
parser = get_default_parser()
args = parser.parse_args()
# set run_name: loss_blr_dataset_seed_datestamp
args.timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
args.run_name = f'{args.loss}_blr:{args.blr}_{args.dataset}_seed:{args.seed}'
args.output_dir = os.path.join(args.output_dir, args.dataset, args.run_name + '_' + args.timestamp)
args.wandb_project = f'ViT-B16_{args.dataset}'
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
os.environ["MASTER_ADDR"] = get_ip_address()
os.environ["MASTER_PORT"] = str(get_open_port())
if args.debug:
main(0, 1, args)
else:
world_size = args.world_size
mp.spawn(main, args=(world_size, args), nprocs=world_size, join=True)