diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index bb71dd2..b2aeb2c 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -22,3 +22,11 @@ jobs: - uses: actions/checkout@v4 - name: build run: cd engine && make test + + build-initial-population: + runs-on: ubuntu-latest + + steps: + - uses: actions/checkout@v4 + - name: build + run: cd initial-population && make diff --git a/initial-population/.gitignore b/initial-population/.gitignore new file mode 100644 index 0000000..c41ca02 --- /dev/null +++ b/initial-population/.gitignore @@ -0,0 +1,2 @@ +*.ann +initial-population diff --git a/initial-population/Makefile b/initial-population/Makefile new file mode 100644 index 0000000..a0ea4e4 --- /dev/null +++ b/initial-population/Makefile @@ -0,0 +1,21 @@ +CFLAGS = -Wall -Wshadow -O3 -g -march=native +LDLIBS = -lm + +OBJS = genann.o + +default: initial-population + +%.dep : %.c + $(CC) -M $< > $@ +include $(OBJS:.o=.dep) + +initial-population: $(OBJS) main.o + $(CC) $(CFLAGS) -o $@ $^ $(LDLIBS) + +%.o: %.c + $(CC) $(CFLAGS) -o $@ -c $< + +clean: + $(RM) *.o *.ann + $(RM) initial-population + diff --git a/initial-population/genann.c b/initial-population/genann.c new file mode 100644 index 0000000..b05fa4f --- /dev/null +++ b/initial-population/genann.c @@ -0,0 +1,405 @@ +/* + * GENANN - Minimal C Artificial Neural Network + * + * Copyright (c) 2015-2018 Lewis Van Winkle + * + * http://CodePlea.com + * + * This software is provided 'as-is', without any express or implied + * warranty. In no event will the authors be held liable for any damages + * arising from the use of this software. + * + * Permission is granted to anyone to use this software for any purpose, + * including commercial applications, and to alter it and redistribute it + * freely, subject to the following restrictions: + * + * 1. The origin of this software must not be misrepresented; you must not + * claim that you wrote the original software. If you use this software + * in a product, an acknowledgement in the product documentation would be + * appreciated but is not required. + * 2. Altered source versions must be plainly marked as such, and must not be + * misrepresented as being the original software. + * 3. This notice may not be removed or altered from any source distribution. + * + */ + +#include "genann.h" + +#include +#include +#include +#include +#include +#include + +#ifndef genann_act +#define genann_act_hidden genann_act_hidden_indirect +#define genann_act_output genann_act_output_indirect +#else +#define genann_act_hidden genann_act +#define genann_act_output genann_act +#endif + +#define LOOKUP_SIZE 4096 + +double genann_act_hidden_indirect(const struct genann *ann, double a) { + return ann->activation_hidden(ann, a); +} + +double genann_act_output_indirect(const struct genann *ann, double a) { + return ann->activation_output(ann, a); +} + +const double sigmoid_dom_min = -15.0; +const double sigmoid_dom_max = 15.0; +double interval; +double lookup[LOOKUP_SIZE]; + +#ifdef __GNUC__ +#define likely(x) __builtin_expect(!!(x), 1) +#define unlikely(x) __builtin_expect(!!(x), 0) +#define unused __attribute__((unused)) +#else +#define likely(x) x +#define unlikely(x) x +#define unused +#pragma warning(disable : 4996) /* For fscanf */ +#endif + + +double genann_act_sigmoid(const genann *ann unused, double a) { + if (a < -45.0) return 0; + if (a > 45.0) return 1; + return 1.0 / (1 + exp(-a)); +} + +void genann_init_sigmoid_lookup(const genann *ann) { + const double f = (sigmoid_dom_max - sigmoid_dom_min) / LOOKUP_SIZE; + int i; + + interval = LOOKUP_SIZE / (sigmoid_dom_max - sigmoid_dom_min); + for (i = 0; i < LOOKUP_SIZE; ++i) { + lookup[i] = genann_act_sigmoid(ann, sigmoid_dom_min + f * i); + } +} + +double genann_act_sigmoid_cached(const genann *ann unused, double a) { + assert(!isnan(a)); + + if (a < sigmoid_dom_min) return lookup[0]; + if (a >= sigmoid_dom_max) return lookup[LOOKUP_SIZE - 1]; + + size_t j = (size_t)((a-sigmoid_dom_min)*interval+0.5); + + /* Because floating point... */ + if (unlikely(j >= LOOKUP_SIZE)) return lookup[LOOKUP_SIZE - 1]; + + return lookup[j]; +} + +double genann_act_linear(const struct genann *ann unused, double a) { + return a; +} + +double genann_act_threshold(const struct genann *ann unused, double a) { + return a > 0; +} + +genann *genann_init(int inputs, int hidden_layers, int hidden, int outputs) { + if (hidden_layers < 0) return 0; + if (inputs < 1) return 0; + if (outputs < 1) return 0; + if (hidden_layers > 0 && hidden < 1) return 0; + + + const int hidden_weights = hidden_layers ? (inputs+1) * hidden + (hidden_layers-1) * (hidden+1) * hidden : 0; + const int output_weights = (hidden_layers ? (hidden+1) : (inputs+1)) * outputs; + const int total_weights = (hidden_weights + output_weights); + + const int total_neurons = (inputs + hidden * hidden_layers + outputs); + + /* Allocate extra size for weights, outputs, and deltas. */ + const int size = sizeof(genann) + sizeof(double) * (total_weights + total_neurons + (total_neurons - inputs)); + genann *ret = malloc(size); + if (!ret) return 0; + + ret->inputs = inputs; + ret->hidden_layers = hidden_layers; + ret->hidden = hidden; + ret->outputs = outputs; + + ret->total_weights = total_weights; + ret->total_neurons = total_neurons; + + /* Set pointers. */ + ret->weight = (double*)((char*)ret + sizeof(genann)); + ret->output = ret->weight + ret->total_weights; + ret->delta = ret->output + ret->total_neurons; + + genann_randomize(ret); + + ret->activation_hidden = genann_act_sigmoid_cached; + ret->activation_output = genann_act_sigmoid_cached; + + genann_init_sigmoid_lookup(ret); + + return ret; +} + + +genann *genann_read(FILE *in) { + int inputs, hidden_layers, hidden, outputs; + int rc; + + errno = 0; + rc = fscanf(in, "%d %d %d %d", &inputs, &hidden_layers, &hidden, &outputs); + if (rc < 4 || errno != 0) { + perror("fscanf"); + return NULL; + } + + genann *ann = genann_init(inputs, hidden_layers, hidden, outputs); + + int i; + for (i = 0; i < ann->total_weights; ++i) { + errno = 0; + rc = fscanf(in, " %le", ann->weight + i); + if (rc < 1 || errno != 0) { + perror("fscanf"); + genann_free(ann); + + return NULL; + } + } + + return ann; +} + + +genann *genann_copy(genann const *ann) { + const int size = sizeof(genann) + sizeof(double) * (ann->total_weights + ann->total_neurons + (ann->total_neurons - ann->inputs)); + genann *ret = malloc(size); + if (!ret) return 0; + + memcpy(ret, ann, size); + + /* Set pointers. */ + ret->weight = (double*)((char*)ret + sizeof(genann)); + ret->output = ret->weight + ret->total_weights; + ret->delta = ret->output + ret->total_neurons; + + return ret; +} + + +void genann_randomize(genann *ann) { + int i; + for (i = 0; i < ann->total_weights; ++i) { + double r = GENANN_RANDOM(); + /* Sets weights from -0.5 to 0.5. */ + ann->weight[i] = r - 0.5; + } +} + + +void genann_free(genann *ann) { + /* The weight, output, and delta pointers go to the same buffer. */ + free(ann); +} + + +double const *genann_run(genann const *ann, double const *inputs) { + double const *w = ann->weight; + double *o = ann->output + ann->inputs; + double const *i = ann->output; + + /* Copy the inputs to the scratch area, where we also store each neuron's + * output, for consistency. This way the first layer isn't a special case. */ + memcpy(ann->output, inputs, sizeof(double) * ann->inputs); + + int h, j, k; + + if (!ann->hidden_layers) { + double *ret = o; + for (j = 0; j < ann->outputs; ++j) { + double sum = *w++ * -1.0; + for (k = 0; k < ann->inputs; ++k) { + sum += *w++ * i[k]; + } + *o++ = genann_act_output(ann, sum); + } + + return ret; + } + + /* Figure input layer */ + for (j = 0; j < ann->hidden; ++j) { + double sum = *w++ * -1.0; + for (k = 0; k < ann->inputs; ++k) { + sum += *w++ * i[k]; + } + *o++ = genann_act_hidden(ann, sum); + } + + i += ann->inputs; + + /* Figure hidden layers, if any. */ + for (h = 1; h < ann->hidden_layers; ++h) { + for (j = 0; j < ann->hidden; ++j) { + double sum = *w++ * -1.0; + for (k = 0; k < ann->hidden; ++k) { + sum += *w++ * i[k]; + } + *o++ = genann_act_hidden(ann, sum); + } + + i += ann->hidden; + } + + double const *ret = o; + + /* Figure output layer. */ + for (j = 0; j < ann->outputs; ++j) { + double sum = *w++ * -1.0; + for (k = 0; k < ann->hidden; ++k) { + sum += *w++ * i[k]; + } + *o++ = genann_act_output(ann, sum); + } + + /* Sanity check that we used all weights and wrote all outputs. */ + assert(w - ann->weight == ann->total_weights); + assert(o - ann->output == ann->total_neurons); + + return ret; +} + + +void genann_train(genann const *ann, double const *inputs, double const *desired_outputs, double learning_rate) { + /* To begin with, we must run the network forward. */ + genann_run(ann, inputs); + + int h, j, k; + + /* First set the output layer deltas. */ + { + double const *o = ann->output + ann->inputs + ann->hidden * ann->hidden_layers; /* First output. */ + double *d = ann->delta + ann->hidden * ann->hidden_layers; /* First delta. */ + double const *t = desired_outputs; /* First desired output. */ + + + /* Set output layer deltas. */ + if (genann_act_output == genann_act_linear || + ann->activation_output == genann_act_linear) { + for (j = 0; j < ann->outputs; ++j) { + *d++ = *t++ - *o++; + } + } else { + for (j = 0; j < ann->outputs; ++j) { + *d++ = (*t - *o) * *o * (1.0 - *o); + ++o; ++t; + } + } + } + + + /* Set hidden layer deltas, start on last layer and work backwards. */ + /* Note that loop is skipped in the case of hidden_layers == 0. */ + for (h = ann->hidden_layers - 1; h >= 0; --h) { + + /* Find first output and delta in this layer. */ + double const *o = ann->output + ann->inputs + (h * ann->hidden); + double *d = ann->delta + (h * ann->hidden); + + /* Find first delta in following layer (which may be hidden or output). */ + double const * const dd = ann->delta + ((h+1) * ann->hidden); + + /* Find first weight in following layer (which may be hidden or output). */ + double const * const ww = ann->weight + ((ann->inputs+1) * ann->hidden) + ((ann->hidden+1) * ann->hidden * (h)); + + for (j = 0; j < ann->hidden; ++j) { + + double delta = 0; + + for (k = 0; k < (h == ann->hidden_layers-1 ? ann->outputs : ann->hidden); ++k) { + const double forward_delta = dd[k]; + const int windex = k * (ann->hidden + 1) + (j + 1); + const double forward_weight = ww[windex]; + delta += forward_delta * forward_weight; + } + + *d = *o * (1.0-*o) * delta; + ++d; ++o; + } + } + + + /* Train the outputs. */ + { + /* Find first output delta. */ + double const *d = ann->delta + ann->hidden * ann->hidden_layers; /* First output delta. */ + + /* Find first weight to first output delta. */ + double *w = ann->weight + (ann->hidden_layers + ? ((ann->inputs+1) * ann->hidden + (ann->hidden+1) * ann->hidden * (ann->hidden_layers-1)) + : (0)); + + /* Find first output in previous layer. */ + double const * const i = ann->output + (ann->hidden_layers + ? (ann->inputs + (ann->hidden) * (ann->hidden_layers-1)) + : 0); + + /* Set output layer weights. */ + for (j = 0; j < ann->outputs; ++j) { + *w++ += *d * learning_rate * -1.0; + for (k = 1; k < (ann->hidden_layers ? ann->hidden : ann->inputs) + 1; ++k) { + *w++ += *d * learning_rate * i[k-1]; + } + + ++d; + } + + assert(w - ann->weight == ann->total_weights); + } + + + /* Train the hidden layers. */ + for (h = ann->hidden_layers - 1; h >= 0; --h) { + + /* Find first delta in this layer. */ + double const *d = ann->delta + (h * ann->hidden); + + /* Find first input to this layer. */ + double const *i = ann->output + (h + ? (ann->inputs + ann->hidden * (h-1)) + : 0); + + /* Find first weight to this layer. */ + double *w = ann->weight + (h + ? ((ann->inputs+1) * ann->hidden + (ann->hidden+1) * (ann->hidden) * (h-1)) + : 0); + + + for (j = 0; j < ann->hidden; ++j) { + *w++ += *d * learning_rate * -1.0; + for (k = 1; k < (h == 0 ? ann->inputs : ann->hidden) + 1; ++k) { + *w++ += *d * learning_rate * i[k-1]; + } + ++d; + } + + } + +} + + +void genann_write(genann const *ann, FILE *out) { + fprintf(out, "%d %d %d %d", ann->inputs, ann->hidden_layers, ann->hidden, ann->outputs); + + int i; + for (i = 0; i < ann->total_weights; ++i) { + fprintf(out, " %.20e", ann->weight[i]); + } +} + + diff --git a/initial-population/genann.h b/initial-population/genann.h new file mode 100644 index 0000000..e4b7383 --- /dev/null +++ b/initial-population/genann.h @@ -0,0 +1,108 @@ +/* + * GENANN - Minimal C Artificial Neural Network + * + * Copyright (c) 2015-2018 Lewis Van Winkle + * + * http://CodePlea.com + * + * This software is provided 'as-is', without any express or implied + * warranty. In no event will the authors be held liable for any damages + * arising from the use of this software. + * + * Permission is granted to anyone to use this software for any purpose, + * including commercial applications, and to alter it and redistribute it + * freely, subject to the following restrictions: + * + * 1. The origin of this software must not be misrepresented; you must not + * claim that you wrote the original software. If you use this software + * in a product, an acknowledgement in the product documentation would be + * appreciated but is not required. + * 2. Altered source versions must be plainly marked as such, and must not be + * misrepresented as being the original software. + * 3. This notice may not be removed or altered from any source distribution. + * + */ + + +#ifndef GENANN_H +#define GENANN_H + +#include + +#ifdef __cplusplus +extern "C" { +#endif + +#ifndef GENANN_RANDOM +/* We use the following for uniform random numbers between 0 and 1. + * If you have a better function, redefine this macro. */ +#define GENANN_RANDOM() (((double)rand())/RAND_MAX) +#endif + +struct genann; + +typedef double (*genann_actfun)(const struct genann *ann, double a); + +typedef struct genann { + /* How many inputs, outputs, and hidden neurons. */ + int inputs, hidden_layers, hidden, outputs; + + /* Which activation function to use for hidden neurons. Default: gennann_act_sigmoid_cached*/ + genann_actfun activation_hidden; + + /* Which activation function to use for output. Default: gennann_act_sigmoid_cached*/ + genann_actfun activation_output; + + /* Total number of weights, and size of weights buffer. */ + int total_weights; + + /* Total number of neurons + inputs and size of output buffer. */ + int total_neurons; + + /* All weights (total_weights long). */ + double *weight; + + /* Stores input array and output of each neuron (total_neurons long). */ + double *output; + + /* Stores delta of each hidden and output neuron (total_neurons - inputs long). */ + double *delta; + +} genann; + +/* Creates and returns a new ann. */ +genann *genann_init(int inputs, int hidden_layers, int hidden, int outputs); + +/* Creates ANN from file saved with genann_write. */ +genann *genann_read(FILE *in); + +/* Sets weights randomly. Called by init. */ +void genann_randomize(genann *ann); + +/* Returns a new copy of ann. */ +genann *genann_copy(genann const *ann); + +/* Frees the memory used by an ann. */ +void genann_free(genann *ann); + +/* Runs the feedforward algorithm to calculate the ann's output. */ +double const *genann_run(genann const *ann, double const *inputs); + +/* Does a single backprop update. */ +void genann_train(genann const *ann, double const *inputs, double const *desired_outputs, double learning_rate); + +/* Saves the ann. */ +void genann_write(genann const *ann, FILE *out); + +void genann_init_sigmoid_lookup(const genann *ann); +double genann_act_sigmoid(const genann *ann, double a); +double genann_act_sigmoid_cached(const genann *ann, double a); +double genann_act_threshold(const genann *ann, double a); +double genann_act_linear(const genann *ann, double a); + + +#ifdef __cplusplus +} +#endif + +#endif /*GENANN_H*/ diff --git a/initial-population/main.c b/initial-population/main.c new file mode 100644 index 0000000..85619a2 --- /dev/null +++ b/initial-population/main.c @@ -0,0 +1,72 @@ +/* + +MIT License + +Copyright (c) 2023 Urban Hafner + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + +*/ + +#include + +#include "genann.h" + +int main(int argc, char **argv) { + // Do not buffer stdout + setbuf(stdout, NULL); + + int population_size, board_size, hidden_layers, hidden; + + if (argc != 5) { + fprintf(stderr, "4 arguments required: population_size, board size, no. hidden layers, no. neurons per layer!\n"); + exit(1); + } + + population_size = atoi(argv[1]); + board_size = atoi(argv[2]); + hidden_layers = atoi(argv[3]); + hidden = atoi(argv[4]); + + printf( + "population_size = %d, board_size = %d, hidden_layers = %d, hidden = %d\n", + population_size, + board_size, + hidden_layers, + hidden + ); + + char buffer[10]; + // Pass in the komi + int inputs = (board_size * board_size) + 1; + // Allow pass move + int outputs = (board_size * board_size) + 1; + + for(int i = 1; i <= population_size; i++) { + printf("\r%d/%d", i, population_size); + sprintf(buffer, "%04d.ann", i); + + FILE *fd = fopen(buffer, "w"); + genann *ann = genann_init(inputs, hidden_layers, hidden, outputs); + genann_write(ann, fd); + genann_free(ann); + fclose(fd); + } + printf("\n"); +}