-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.toml
63 lines (55 loc) · 3.22 KB
/
config.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# HOOPLApy config file
[operations]
calibration = true # Run calibration
simulation = true # Run simulation
forecast = true # Run forecast
[dates]
calibration.begin = 1997-01-01T03:00:00
#calibration.begin = 2000-01-01T03:00:00
calibration.end = 2007-01-10T00:00:00
simulation.begin = 2010-01-01T03:00:00
simulation.end = 2015-01-01T00:00:00
forecast.begin = 2015-04-15T03:00:00
forecast.end = 2016-07-01T00:00:00
[general]
verbose = true # Verbose. Display information about computing
time_step = '3h' # Computation time step. Choose between '3h' and '24h'
compute_pet = true # Compute PET
compute_snowmelt = true # Compute snowmelt
compute_warm_up = true # Add warm up before modelling
export_light = true # Export fewer data(/results) to save space
overwrite = true # Overwrite existing files created by HOOPLA
seed = 42 # Seed for random number generation. If seed is 'None', then use random seed each run.
parallelism = false # Run models in parallel
[calibration]
export = true # Export calibrated parameters to ./Data for future Simulat/Forecastce calibration is performed
calibrate_snow = true # Calibrate snow module (if 0, default values are used)
method = 'SCE' # Choose between 'DDS' and 'SCE'
remove_winter = true # Remove the Quebec "ice months" (dec, jan, fev, mar)
score = 'RMSE' # Performance criteron (RMSE, MSE, NSE, etc.)
maxiter = 500 # Maximum number of iteration during calibration
SCE.ngs = 25 # Number of Complexes for the SCE optimization
[forecast]
issue_time = 6 # Hour of the day for which a forecast is issued (can be several per day ex: [6 12 18 24])
perfect_forecast = true # Use meteorological observations as meteorological forecast
horizon = 80 # Horizon of the forecast (in time steps)
meteo_ens = false # Use meteorological ensemble forecast
[data]
do_data_assimilation = false # Perform data assimilation
tech = 'EnKF' # Choose either 'EnKF' (Ensemble Kalman Filter), 'PF' (particle filter), or 'PertOnly' (perturbation of inputs only)
Uc_Q = 0.1 # Discharge (standard deviation=10# * Qobs)
Uc_Pt = 0.5 # Rainfal (standard deviation=50# * Pt mm, reference:Liu et al 2012,Reichl 2002)
Uc_T_pet = 2 # temperature for PET (std deg cel)
Uc_T_snow_melt = 2 # temperature for snow melt(std in deg cel)
Uc_T_min = 2 # min temperature for snow melt(std in degree cel)
Uc_T_max = 2 # max temperature for snow melt(std in degree cel)
Uc_E = 0.1 # PET (standard deviation=10# * E). Value used only if petCompute=0
dt = 8 # delta t between two correction steps
N = 50 # Ensemble size
PF.resample_tech = 'systematic_resampling' # resampling technique. Either 'multinomial_resampling' or 'systematic_resampling'
PF.resample_thresh = inf # Particle effective ensemble size before resampling. Included in [0 N]. 0 = never resample, ..., N = resample at each time step
[models]
hydro_models = ['HydroMod1']
pet_models = ['Oudin']
sar_models = ['CemaNeige']
da_models = ['EnsembleKalmanFilter']