-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
130 lines (97 loc) · 3.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import os
from sys import platform
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
np.set_printoptions(linewidth=320, formatter={"float_kind": "{:11.5g}".format}) # format short g, %precision=5
matplotlib.rc("font", **{"size": 8})
path = "/Users/glennjocher/Downloads/SANDD/"
# 1. time each waveform, and then integrate based on a new t0 which is the timed sample.
# 2. make sure waveforms appear on both sides of a rod
# 3. try and make a flat fielding map from all the data
# 4. Slava will make a new format with rod_ID
def main():
"""Process waveform data files to extract and analyze signals, apply cuts, and visualize results using
matplotlib.
"""
files = [
"background_64rods_noteflon_amps_27V_12hr_0.glenn", # background
"Cs_collimated_oneSource_center_64rods_noteflon_amps_27V_500s_0.glenn", # Cs137 (gammas)
"Cf_centered_20inches_from6inchLeadShield_64rods_noteflon_amps_27V_500s_0.glenn",
] # Cf (gammas + neutrons)
# Read data
# timestamp, digitizer_ID, digitizer_channel, SiPM_ID, SiPM_channnel, number_of_samples, V1 V2 V3 .... V400
file = files[1]
with open(path + file) as f: # Method 3 (5.5s)
lines = f.read().split()
# x = np.array(lines[:406 * 3000], dtype=np.float32).reshape((-1, 406))
x = np.array(lines, dtype=np.float32).reshape((-1, 406))
# Get waveforms
y = x[:, 6:] # waveforms
# Subtract pedestals
pedestal = y[:, :60]
y -= pedestal.mean(1, keepdims=True)
# Normalize amplitudes
ymax = y.max(1, keepdims=True)
yn = y / ymax
# Time
t0 = waveform_times(y) - 5 # 5 samples before leading edge of each pulse
# Charges
q_total, q_tail = charges(y, t0)
# Candidate cuts
j = (ymax.ravel() < 9000) & (ymax.ravel() > 100) & (yn.min(1) > -0.5) & (yn[:, :50].std(1) < 0.1) & (q_tail > 0)
print(f"{j.sum():g}/{len(y):g} ({j.mean() * 100:.1f}%) pass candidate cuts")
y, q_total, q_tail = y[j], q_total[j], q_tail[j]
# Plotting
log = False
fig = plt.figure(figsize=(7, 7))
plt.subplot(2, 2, 1)
plt.plot(y[:30].T)
plt.autoscale(axis="both", tight=True)
plt.suptitle(file)
plt.subplot(2, 2, 2)
n = 100
r = q_tail / q_total
i = (r > 0.5) & (r < 0.8) & (q_total < 200) & (q_total > 10)
cmap = plt.cm.jet
cmap.set_under("w", 1)
plt.hist2d(q_total[i], r[i], bins=n, range=[[0, 200], [0.5, 0.8]], cmap=cmap, vmin=1)
plt.subplot(2, 2, 3)
plt.hist(r[i & (q_total > 20)], bins=n, log=log)
plt.title("Q_tail / Q_total")
plt.subplot(2, 2, 4)
plt.hist(q_total[i], bins=n, range=[0, 200], log=log)
plt.title("Q_total")
fig.tight_layout()
fig.savefig("results.png", dpi=300)
if platform == "darwin": # MacOS
os.system("open results.png")
# Plot.ly
# trace = go.Scatter(y=y.T)
# data = [trace]
# plot([go.Scatter(y=y)], filename='basic-line')
# data = [go.Scatter(y=yi,mode = 'lines') for yi in y]
# plot(data)
# plot([go.Histogram(x=porch.std(1), nbinsx=30)])
def waveform_times(waveform):
"""Returns the index of the sample with the maximum derivative for each waveform in the input array."""
return np.diff(waveform, axis=1).argmax(1)
def charges(x, s=100):
"""Returns Q_total and Q_tail for each waveform in x, starting from sample s."""
n = len(s)
q_tail, q_total = np.zeros((2, n))
for i in range(n):
a = x[i, s[i] + 0 : s[i] + 220]
q_tail[i] = a[28:].sum()
q_total[i] = a.sum()
# q_total = x[:, s + 0: s + 220].sum(1)
# q_tail = x[:, s + 28: s + 220].sum(1)
return q_total / 1000, q_tail / 1000
def matched_sipms(array_id):
"""Returns None for matched SiPMs, currently not implemented."""
return None
# 64 to 57
#
if __name__ == "__main__":
main()