From 23959ef43d0ea5c3aeeb6e07f41391d660f48b54 Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Fri, 5 Jul 2024 14:24:07 +0200 Subject: [PATCH] Add Discourse at https://community.ultralytics.com (#15) Co-authored-by: UltralyticsAssistant --- README.md | 2 +- utils/datasets.py | 1 + utils/utils.py | 3 +-- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 05c2b38..44045a2 100644 --- a/README.md +++ b/README.md @@ -5,7 +5,7 @@ Welcome to the Ultralytics software directory! Our codebase is open-source and 🔓 **distributed under the AGPL-3.0 license**. Explore more about Ultralytics and our cutting-edge projects at [our website](http://www.ultralytics.com). -[![Ultralytics Actions](https://github.com/ultralytics/xview-docker/actions/workflows/format.yml/badge.svg)](https://github.com/ultralytics/xview-docker/actions/workflows/format.yml) Discord +[![Ultralytics Actions](https://github.com/ultralytics/xview-docker/actions/workflows/format.yml/badge.svg)](https://github.com/ultralytics/xview-docker/actions/workflows/format.yml) Discord Ultralytics Forums # Project Overview :page_facing_up: diff --git a/utils/datasets.py b/utils/datasets.py index d38f0a4..d2537de 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -401,6 +401,7 @@ def resize_square(img, height=416, color=(0, 0, 0)): # resizes a rectangular im def random_affine( img, targets=None, degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-3, 3), borderValue=(0, 0, 0) ): + """Applies a random affine transformation to an image and updates target labels accordingly.""" # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) # https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4 border = 750 diff --git a/utils/utils.py b/utils/utils.py index 9d7c641..3551289 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -424,9 +424,7 @@ def build_targets(pred_boxes, pred_conf, pred_cls, target, anchor_wh, nA, nC, nG return tx, ty, tw, th, tconf, tcls, TP, FP, FN, TC -# @profile def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4, mat=None, img=None, model2=None, device="cpu"): - prediction = prediction.cpu() """ Removes detections with lower object confidence score than 'conf_thres' and performs Non-Maximum Suppression to further filter detections. @@ -434,6 +432,7 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4, mat=None, img Returns detections with shape: (x1, y1, x2, y2, object_conf, class_score, class_pred) """ + prediction = prediction.cpu() output = [None for _ in range(len(prediction))] # Filter out confidence scores below threshold