forked from jimstevens2001/HybridSim
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLogger.cpp
813 lines (658 loc) · 24.6 KB
/
Logger.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
/*********************************************************************************
* Copyright (c) 2010-2011,
* Jim Stevens, Paul Tschirhart, Ishwar Singh Bhati, Mu-Tien Chang, Peter Enns,
* Elliott Cooper-Balis, Paul Rosenfeld, Bruce Jacob
* University of Maryland
* Contact: jims [at] cs [dot] umd [dot] edu
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*********************************************************************************/
#include "Logger.h"
using namespace std;
namespace HybridSim
{
Logger::Logger()
{
}
Logger::~Logger()
{
if (DEBUG_LOGGER && debug.is_open())
debug.close();
}
void Logger::init()
{
// Overall state
num_accesses = 0;
num_reads = 0;
num_writes = 0;
num_misses = 0;
num_hits = 0;
num_read_misses = 0;
num_read_hits = 0;
num_write_misses = 0;
num_write_hits = 0;
sum_latency = 0;
sum_read_latency = 0;
sum_write_latency = 0;
sum_queue_latency = 0;
sum_miss_latency = 0;
sum_hit_latency = 0;
sum_read_hit_latency = 0;
sum_read_miss_latency = 0;
sum_write_hit_latency = 0;
sum_write_miss_latency = 0;
max_queue_length = 0;
sum_queue_length = 0;
idle_counter = 0;
flash_idle_counter = 0;
dram_idle_counter = 0;
num_mmio_dropped = 0;
num_mmio_remapped = 0;
// Init the latency histogram.
for (uint64_t i = 0; i <= HISTOGRAM_MAX; i += HISTOGRAM_BIN)
{
latency_histogram[i] = 0;
}
// Init the set conflicts.
for (uint64_t i = 0; i < NUM_SETS; i++)
{
set_conflicts[i] = 0;
}
// Resetting the epoch state will initialize it.
epoch_count = 0;
this->epoch_reset(true);
if (DEBUG_LOGGER)
{
debug.open("debug.log", ios_base::out | ios_base::trunc);
if (!debug.is_open())
{
cerr << "ERROR: HybridSim Logger debug file failed to open.\n";
abort();
}
}
}
void Logger::update()
{
// Every EPOCH_LENGTH cycles, reset the epoch state.
if (this->currentClockCycle % EPOCH_LENGTH == 0)
epoch_reset(false);
// Increment to the next clock cycle.
this->step();
}
void Logger::access_start(uint64_t addr)
{
access_queue.push_back(pair <uint64_t, uint64_t>(addr, currentClockCycle));
if (DEBUG_LOGGER)
{
list<pair <uint64_t, uint64_t>>::iterator it = access_queue.begin();
debug << "access_start( " << addr << " , " << currentClockCycle << " ) / aq: ( " << (*it).first << " , " << (*it).second << " )\n\n";
}
}
void Logger::access_process(uint64_t addr, bool read_op, bool hit)
{
if (DEBUG_LOGGER)
debug << "access_process( " << addr << " , " << read_op << " )\n";
// Get entry off of the access_queue.
uint64_t start_cycle = 0;
bool found = false;
list<pair <uint64_t, uint64_t>>::iterator it;
uint64_t counter = 0;
for (it = access_queue.begin(); it != access_queue.end(); it++, counter++)
{
uint64_t cur_addr = (*it).first;
uint64_t cur_cycle = (*it).second;
if (DEBUG_LOGGER)
debug << counter << " cur_addr = " << cur_addr << ", cur_cycle = " << cur_cycle << "\n";
if (cur_addr == addr)
{
start_cycle = cur_cycle;
found = true;
access_queue.erase(it);
if (DEBUG_LOGGER)
debug << "found match!\n";
break;
}
}
if (!found)
{
cerr << "ERROR: Logger.access_process() called with address not in the access_queue. address=0x" << hex << addr << "\n" << dec;
abort();
}
if (access_map.count(addr) != 0)
{
cerr << "ERROR: Logger.access_process() called with address already in access_map. address=0x" << hex << addr << "\n" << dec;
abort();
}
AccessMapEntry a;
a.start = start_cycle;
a.read_op = read_op;
a.hit = hit;
a.process = this->currentClockCycle;
access_map[addr] = a;
uint64_t time_in_queue = a.process - a.start;
this->queue_latency(time_in_queue);
if (DEBUG_LOGGER)
debug << "finished access_process. time_in_queue = " << time_in_queue << "\n\n";
}
void Logger::access_stop(uint64_t addr)
{
if (DEBUG_LOGGER)
debug << "access_stop( " << addr << " )\n";
if (access_map.count(addr) == 0)
{
cerr << "ERROR: Logger.access_stop() called with address not in access_map. address=" << hex << addr << "\n" << dec;
abort();
}
AccessMapEntry a = access_map[addr];
a.stop = this->currentClockCycle;
access_map[addr] = a;
uint64_t latency = a.stop - a.start;
// Log cache event type and latency.
if (a.read_op && a.hit)
{
this->read_hit();
this->read_hit_latency(latency);
}
else if (a.read_op && !a.hit)
{
this->read_miss();
this->read_miss_latency(latency);
}
else if (!a.read_op && a.hit)
{
this->write_hit();
this->write_hit_latency(latency);
}
else if (!a.read_op && !a.hit)
{
this->write_miss();
this->write_miss_latency(latency);
}
access_map.erase(addr);
if (DEBUG_LOGGER)
debug << "finished access_stop. latency = " << latency << "\n\n";
}
void Logger::access_update(uint64_t queue_length, bool idle, bool flash_idle, bool dram_idle)
{
// Log the queue length.
if (queue_length > max_queue_length)
max_queue_length = queue_length;
sum_queue_length += queue_length;
// Log the queue length for the current epoch.
if (queue_length > cur_max_queue_length)
cur_max_queue_length = queue_length;
cur_sum_queue_length += queue_length;
//cerr << "access_queue length = " << access_queue.size() << "; queue_length = " << queue_length << ";\n";
// Update idle counters.
if (idle)
{
idle_counter++;
cur_idle_counter++;
}
if (flash_idle)
{
flash_idle_counter++;
cur_flash_idle_counter++;
}
if (dram_idle)
{
dram_idle_counter++;
cur_dram_idle_counter++;
}
}
void Logger::access_page(uint64_t page_addr)
{
if (pages_used.count(page_addr) == 0)
{
// Create an entry for a page that has not been previously accessed.
pages_used[page_addr] = 0;
}
// At this point, the invariant is that the page entry exists in pages_used
// and is >= 0.
// Load, increment, and store.
uint64_t cur_count = pages_used[page_addr];
cur_count += 1;
pages_used[page_addr] = cur_count;
// Now do the same for the cur_pages_used (which is for this epoch only).
if (cur_pages_used.count(page_addr) == 0)
{
// Create an entry for a page that has not been previously accessed.
cur_pages_used[page_addr] = 0;
}
// At this point, the invariant is that the page entry exists in pages_used
// and is >= 0.
// Increment.
cur_count = cur_pages_used[page_addr];
cur_count += 1;
cur_pages_used[page_addr] = cur_count;
}
void Logger::access_set_conflict(uint64_t cache_set)
{
// Increment the conflict counter for this set.
uint64_t tmp = set_conflicts[cache_set];
set_conflicts[cache_set] = tmp + 1;
}
void Logger::access_miss(uint64_t missed_page, uint64_t victim_page, uint64_t cache_set, uint64_t cache_page, bool dirty, bool valid)
{
MissedPageEntry m(currentClockCycle, missed_page, victim_page, cache_set, cache_page, dirty, valid);
missed_page_list.push_back(m);
}
void Logger::mmio_dropped()
{
num_mmio_dropped++;
cur_num_mmio_dropped++;
}
void Logger::mmio_remapped()
{
num_mmio_remapped++;
cur_num_mmio_remapped++;
}
void Logger::read()
{
num_accesses += 1;
num_reads += 1;
cur_num_accesses += 1;
cur_num_reads += 1;
}
void Logger::write()
{
num_accesses += 1;
num_writes += 1;
cur_num_accesses += 1;
cur_num_writes += 1;
}
void Logger::hit()
{
num_hits += 1;
cur_num_hits += 1;
}
void Logger::miss()
{
num_misses += 1;
cur_num_misses += 1;
}
void Logger::read_hit()
{
read();
hit();
num_read_hits += 1;
cur_num_read_hits += 1;
}
void Logger::read_miss()
{
read();
miss();
num_read_misses += 1;
cur_num_read_misses += 1;
}
void Logger::write_hit()
{
write();
hit();
num_write_hits += 1;
cur_num_write_hits += 1;
}
void Logger::write_miss()
{
write();
miss();
num_write_misses += 1;
cur_num_write_misses += 1;
}
double Logger::compute_running_average(double old_average, double num_values, double new_value)
{
return ((old_average * (num_values - 1)) + (new_value)) / num_values;
}
void Logger::latency(uint64_t cycles)
{
//average_latency = compute_running_average(average_latency, num_accesses, cycles);
sum_latency += cycles;
cur_sum_latency += cycles;
// Update the latency histogram.
uint64_t bin = (cycles / HISTOGRAM_BIN) * HISTOGRAM_BIN;
if (cycles >= HISTOGRAM_MAX)
bin = HISTOGRAM_MAX;
uint64_t bin_cnt = latency_histogram[bin];
latency_histogram[bin] = bin_cnt + 1;
}
void Logger::read_latency(uint64_t cycles)
{
this->latency(cycles);
sum_read_latency += cycles;
cur_sum_read_latency += cycles;
}
void Logger::write_latency(uint64_t cycles)
{
this->latency(cycles);
sum_write_latency += cycles;
cur_sum_write_latency += cycles;
}
void Logger::queue_latency(uint64_t cycles)
{
sum_queue_latency += cycles;
cur_sum_queue_latency += cycles;
}
void Logger::hit_latency(uint64_t cycles)
{
sum_hit_latency += cycles;
cur_sum_hit_latency += cycles;
}
void Logger::miss_latency(uint64_t cycles)
{
sum_miss_latency += cycles;
cur_sum_miss_latency += cycles;
}
void Logger::read_hit_latency(uint64_t cycles)
{
this->read_latency(cycles);
this->hit_latency(cycles);
sum_read_hit_latency += cycles;
cur_sum_read_hit_latency += cycles;
}
void Logger::read_miss_latency(uint64_t cycles)
{
this->read_latency(cycles);
this->miss_latency(cycles);
sum_read_miss_latency += cycles;
cur_sum_read_miss_latency += cycles;
}
void Logger::write_hit_latency(uint64_t cycles)
{
this->write_latency(cycles);
this->hit_latency(cycles);
sum_write_hit_latency += cycles;
cur_sum_write_hit_latency += cycles;
}
void Logger::write_miss_latency(uint64_t cycles)
{
this->write_latency(cycles);
this->miss_latency(cycles);
sum_write_miss_latency += cycles;
cur_sum_write_miss_latency += cycles;
}
double Logger::divide(uint64_t a, uint64_t b)
{
// This is a division routine to prevent floating point exceptions if the denominator is 0.
if (b == 0)
return 0.0;
else
return (double)a / (double)b;
}
double Logger::miss_rate()
{
return this->divide(num_misses, num_accesses);
}
double Logger::read_miss_rate()
{
return this->divide(num_read_misses, num_reads);
}
double Logger::write_miss_rate()
{
return this->divide(num_write_misses, num_writes);
}
double Logger::compute_throughput(uint64_t cycles, uint64_t accesses)
{
// Calculate the throughput in kilobytes per second.
return ((this->divide(accesses, cycles) * CYCLES_PER_SECOND) * BURST_SIZE) / 1024.0;
}
double Logger::latency_cycles(uint64_t sum, uint64_t accesses)
{
return this->divide(sum, accesses);
}
double Logger::latency_us(uint64_t sum, uint64_t accesses)
{
// Calculate the average latency in microseconds.
return (this->divide(sum, accesses) / CYCLES_PER_SECOND) * 1000000;
}
void Logger::epoch_reset(bool init)
{
// If this is not initialization, then save the epoch state to the lists.
if (init)
{
// Open up the hybridsim_epoch.log
ofstream savefile;
savefile.open("hybridsim_epoch.log", ios_base::out | ios_base::trunc);
if (!savefile.is_open())
{
cerr << "ERROR: HybridSim Logger epoch output file failed to open.\n";
abort();
}
savefile << "================================================================================\n\n";
savefile << "Epoch data:\n\n";
savefile.close();
}
if (!init)
{
// Open up the hybridsim_epoch.log
ofstream savefile;
savefile.open("hybridsim_epoch.log", ios_base::out | ios_base::app);
if (!savefile.is_open())
{
cerr << "ERROR: HybridSim Logger epoch output file failed to open.\n";
abort();
}
// Output the current epoch data.
savefile << "---------------------------------------------------\n";
savefile << "Epoch number: " << epoch_count << "\n";
// Print everything out.
savefile << "total accesses: " << cur_num_accesses << "\n";
savefile << "cycles: " << EPOCH_LENGTH << "\n";
savefile << "execution time: " << (EPOCH_LENGTH / (double)CYCLES_PER_SECOND) * 1000000 << " us\n";
savefile << "misses: " << cur_num_misses << "\n";
savefile << "hits: " << cur_num_hits << "\n";
savefile << "miss rate: " << this->divide(cur_num_misses, cur_num_accesses) << "\n";
savefile << "average latency: " << this->latency_cycles(cur_sum_latency, cur_num_accesses) << " cycles";
savefile << " (" << this->latency_us(cur_sum_latency, cur_num_accesses) << " us)\n";
savefile << "average queue latency: " << this->latency_cycles(cur_sum_queue_latency, cur_num_accesses) << " cycles";
savefile << " (" << this->latency_us(cur_sum_queue_latency, cur_num_accesses) << " us)\n";
savefile << "average miss latency: " << this->latency_cycles(cur_sum_miss_latency, cur_num_misses) << " cycles";
savefile << " (" << this->latency_us(cur_sum_miss_latency, cur_num_misses) << " us)\n";
savefile << "average hit latency: " << this->latency_cycles(cur_sum_hit_latency, cur_num_hits) << " cycles";
savefile << " (" << this->latency_us(cur_sum_hit_latency, cur_num_hits) << " us)\n";
savefile << "throughput: " << this->compute_throughput(EPOCH_LENGTH, cur_num_accesses) << " KB/s\n";
savefile << "working set size in pages: " << cur_pages_used.size() << "\n";
savefile << "working set size in bytes: " << cur_pages_used.size() * PAGE_SIZE << " bytes\n";
savefile << "current queue length: " << access_queue.size() << "\n";
savefile << "max queue length: " << cur_max_queue_length << "\n";
savefile << "average queue length: " << this->divide(cur_sum_queue_length, EPOCH_LENGTH) << "\n";
savefile << "idle counter: " << cur_idle_counter << "\n";
savefile << "idle percentage: " << this->divide(cur_idle_counter, EPOCH_LENGTH) << "\n";
savefile << "flash idle counter: " << cur_flash_idle_counter << "\n";
savefile << "flash idle percentage: " << this->divide(cur_flash_idle_counter, EPOCH_LENGTH) << "\n";
savefile << "dram idle counter: " << cur_dram_idle_counter << "\n";
savefile << "dram idle percentage: " << this->divide(cur_dram_idle_counter, EPOCH_LENGTH) << "\n";
savefile << "MMIO Accesses Dropped: " << cur_num_mmio_dropped << "\n";
savefile << "MMIO Accesses Remapped: " << cur_num_mmio_remapped << "\n";
savefile << "\n";
savefile << "reads: " << cur_num_reads << "\n";
savefile << "misses: " << cur_num_read_misses << "\n";
savefile << "hits: " << cur_num_read_hits << "\n";
savefile << "miss rate: " << this->divide(cur_num_read_misses, cur_num_reads) << "\n";
savefile << "average latency: " << this->latency_cycles(cur_sum_read_latency, cur_num_reads) << " cycles";
savefile << " (" << this->latency_us(cur_sum_read_latency, cur_num_reads) << " us)\n";
savefile << "average miss latency: " << this->latency_cycles(cur_sum_read_miss_latency, cur_num_read_misses) << " cycles";
savefile << " (" << this->latency_us(cur_sum_read_miss_latency, cur_num_read_misses) << " us)\n";
savefile << "average hit latency: " << this->latency_cycles(cur_sum_read_hit_latency, cur_num_read_hits) << " cycles";
savefile << " (" << this->latency_us(cur_sum_read_hit_latency, cur_num_read_hits) << " us)\n";
savefile << "throughput: " << this->compute_throughput(EPOCH_LENGTH, cur_num_reads) << " KB/s\n";
savefile << "\n";
savefile << "writes: " << cur_num_writes << "\n";
savefile << "misses: " << cur_num_write_misses << "\n";
savefile << "hits: " << cur_num_write_hits << "\n";
savefile << "miss rate: " << this->divide(cur_num_write_misses, cur_num_writes) << "\n";
savefile << "average latency: " << this->latency_cycles(cur_sum_write_latency, cur_num_writes) << " cycles";
savefile << " (" << this->latency_us(cur_sum_write_latency, cur_num_writes) << " us)\n";
savefile << "average miss latency: " << this->latency_cycles(cur_sum_write_miss_latency, cur_num_write_misses) << " cycles";
savefile << " (" << this->latency_us(cur_sum_write_miss_latency, cur_num_write_misses) << " us)\n";
savefile << "average hit latency: " << this->latency_cycles(cur_sum_write_hit_latency, cur_num_write_hits) << " cycles";
savefile << " (" << this->latency_us(cur_sum_write_hit_latency, cur_num_write_hits) << " us)\n";
savefile << "throughput: " << this->compute_throughput(EPOCH_LENGTH, cur_num_writes) << " KB/s\n";
savefile << "\n\n";
// Output the missed page data.
savefile << "Missed Page Data:\n";
list<MissedPageEntry>::iterator mit;
for (mit = missed_page_list.begin(); mit != missed_page_list.end(); mit++)
{
uint64_t cycle = (*mit).cycle;
uint64_t missed_page = (*mit).missed_page;
uint64_t victim_page = (*mit).victim_page;
uint64_t cache_set = (*mit).cache_set;
uint64_t cache_page = (*mit).cache_page;
bool dirty = (*mit).dirty;
bool valid = (*mit).valid;
savefile << cycle << ": missed= 0x" << hex << missed_page << "; victim= 0x" << victim_page
<< "; set= " << dec << cache_set << "; missed_tag= " << TAG(missed_page) << "; victim_tag= " << TAG(victim_page)
<< "; cache_page= 0x" << hex << cache_page << dec <<"; dirty = " << dirty
<< "; valid= " << valid << ";\n";
}
savefile << "\n\n";
// Clear the missed page data.
missed_page_list.clear();
// Close the output file.
savefile.close();
epoch_count++;
}
// Reset epoch state
cur_num_accesses = 0;
cur_num_reads = 0;
cur_num_writes = 0;
cur_num_misses = 0;
cur_num_hits = 0;
cur_num_read_misses = 0;
cur_num_read_hits = 0;
cur_num_write_misses = 0;
cur_num_write_hits = 0;
cur_sum_latency = 0;
cur_sum_read_latency = 0;
cur_sum_write_latency = 0;
cur_sum_queue_latency = 0;
cur_sum_miss_latency = 0;
cur_sum_hit_latency = 0;
cur_sum_read_hit_latency = 0;
cur_sum_read_miss_latency = 0;
cur_sum_write_hit_latency = 0;
cur_sum_write_miss_latency = 0;
cur_max_queue_length = 0;
cur_sum_queue_length = 0;
cur_idle_counter = 0;
cur_flash_idle_counter = 0;
cur_dram_idle_counter = 0;
cur_num_mmio_dropped = 0;
cur_num_mmio_remapped = 0;
// Clear cur_pages_used
cur_pages_used.clear();
}
void Logger::print()
{
ofstream savefile;
savefile.open("hybridsim.log", ios_base::out | ios_base::trunc);
if (!savefile.is_open())
{
cerr << "ERROR: HybridSim Logger output file failed to open.\n";
abort();
}
savefile << "total accesses: " << num_accesses << "\n";
savefile << "cycles: " << this->currentClockCycle << "\n";
savefile << "execution time: " << (this->currentClockCycle / (double)CYCLES_PER_SECOND) * 1000000 << " us\n";
savefile << "frequency: " << CYCLES_PER_SECOND << "\n";
savefile << "misses: " << num_misses << "\n";
savefile << "hits: " << num_hits << "\n";
savefile << "miss rate: " << miss_rate() << "\n";
savefile << "average latency: " << this->latency_cycles(sum_latency, num_accesses) << " cycles";
savefile << " (" << this->latency_us(sum_latency, num_accesses) << " us)\n";
savefile << "average queue latency: " << this->latency_cycles(sum_queue_latency, num_accesses) << " cycles";
savefile << " (" << this->latency_us(sum_queue_latency, num_accesses) << " us)\n";
savefile << "average miss latency: " << this->latency_cycles(sum_miss_latency, num_misses) << " cycles";
savefile << " (" << this->latency_us(sum_miss_latency, num_misses) << " us)\n";
savefile << "average hit latency: " << this->latency_cycles(sum_hit_latency, num_hits) << " cycles";
savefile << " (" << this->latency_us(sum_hit_latency, num_hits) << " us)\n";
savefile << "throughput: " << this->compute_throughput(this->currentClockCycle, num_accesses) << " KB/s\n";
savefile << "working set size in pages: " << pages_used.size() << "\n";
savefile << "working set size in bytes: " << pages_used.size() * PAGE_SIZE << " bytes\n";
savefile << "page size: " << PAGE_SIZE << "\n";
savefile << "max queue length: " << max_queue_length << "\n";
savefile << "average queue length: " << this->divide(sum_queue_length, this->currentClockCycle) << "\n";
savefile << "idle counter: " << idle_counter << "\n";
savefile << "idle percentage: " << this->divide(idle_counter, currentClockCycle) << "\n";
savefile << "flash idle counter: " << flash_idle_counter << "\n";
savefile << "flash idle percentage: " << this->divide(flash_idle_counter, currentClockCycle) << "\n";
savefile << "dram idle counter: " << dram_idle_counter << "\n";
savefile << "dram idle percentage: " << this->divide(dram_idle_counter, currentClockCycle) << "\n";
savefile << "MMIO Accesses Dropped: " << num_mmio_dropped << "\n";
savefile << "MMIO Accesses Remapped: " << num_mmio_remapped << "\n";
savefile << "\n";
savefile << "reads: " << num_reads << "\n";
savefile << "misses: " << num_read_misses << "\n";
savefile << "hits: " << num_read_hits << "\n";
savefile << "miss rate: " << read_miss_rate() << "\n";
savefile << "average latency: " << this->latency_cycles(sum_read_latency, num_reads) << " cycles";
savefile << " (" << this->latency_us(sum_read_latency, num_reads) << " us)\n";
savefile << "average miss latency: " << this->latency_cycles(sum_read_miss_latency, num_read_misses) << " cycles";
savefile << " (" << this->latency_us(sum_read_miss_latency, num_read_misses) << " us)\n";
savefile << "average hit latency: " << this->latency_cycles(sum_read_hit_latency, num_read_hits) << " cycles";
savefile << " (" << this->latency_us(sum_read_hit_latency, num_read_hits) << " us)\n";
savefile << "throughput: " << this->compute_throughput(this->currentClockCycle, num_reads) << " KB/s\n";
savefile << "\n";
savefile << "writes: " << num_writes << "\n";
savefile << "misses: " << num_write_misses << "\n";
savefile << "hits: " << num_write_hits << "\n";
savefile << "miss rate: " << write_miss_rate() << "\n";
savefile << "average latency: " << this->latency_cycles(sum_write_latency, num_writes) << " cycles";
savefile << " (" << this->latency_us(sum_write_latency, num_writes) << " us)\n";
savefile << "average miss latency: " << this->latency_cycles(sum_write_miss_latency, num_write_misses) << " cycles";
savefile << " (" << this->latency_us(sum_write_miss_latency, num_write_misses) << " us)\n";
savefile << "average hit latency: " << this->latency_cycles(sum_write_hit_latency, num_write_hits) << " cycles";
savefile << " (" << this->latency_us(sum_write_hit_latency, num_write_hits) << " us)\n";
savefile << "throughput: " << this->compute_throughput(this->currentClockCycle, num_writes) << " KB/s\n";
savefile << "\n\n";
savefile << "================================================================================\n\n";
savefile << "Pages accessed:\n";
savefile << flush;
unordered_map<uint64_t, uint64_t>::iterator it;
for (it = pages_used.begin(); it != pages_used.end(); it++)
{
uint64_t page_addr = (*it).first;
uint64_t num_accesses = (*it).second;
savefile << hex << "0x" << page_addr << " : " << dec << num_accesses << "\n";
}
savefile << "\n\n";
savefile << "================================================================================\n\n";
savefile << "Latency Histogram:\n\n";
savefile << "HISTOGRAM_BIN: " << HISTOGRAM_BIN << "\n";
savefile << "HISTOGRAM_MAX: " << HISTOGRAM_MAX << "\n\n";
for (uint64_t bin = 0; bin <= HISTOGRAM_MAX; bin += HISTOGRAM_BIN)
{
savefile << bin << ": " << latency_histogram[bin] << "\n";
}
savefile << "\n\n";
savefile << "================================================================================\n\n";
savefile << "Set Conflicts:\n\n";
for (uint64_t set = 0; set < NUM_SETS; set++)
{
// Only print the sets that have greater than 0 conflicts.
if (set_conflicts[set])
savefile << set << ": " << set_conflicts[set] << "\n";
}
savefile.close();
}
}