-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNASH.py
409 lines (326 loc) · 12.5 KB
/
NASH.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import argparse
import math
import numpy
from numpy import linalg as LA
import random
import sys
from scipy import spatial
import tensorflow as tf
import types
numpy.set_printoptions(precision=3, suppress=True, threshold=sys.maxsize, linewidth=sys.maxsize)
def alloc(mode, hessians, init_weights, alphas, hparams):
graph = tf.Graph()
session = tf.Session(graph=graph)
n = hparams.n_nodes
# Build optimization problem.
with graph.as_default():
# Hessians: H: Hessian contribution for each node.
# H = [n x (n x n) ]
H = []
for h_i in hessians:
H.append(tf.constant(h_i, tf.float32))
# Weights: W: Weight matix bids.
# W = [n x n]
w_list = []
for i in range(n):
w_i = tf.Variable(init_weights[i], dtype=tf.float32)
w_list.append(w_i)
W_concat = tf.concat(w_list, axis=0) # Build full matrix.
W_clip = tf.clip_by_value(W_concat, 0, 1)
W = tf.linalg.normalize(W_clip, ord=1, axis=1)[0] # Sum to 1.
# Mask: M: The mask to apply over inputs F.
# Q = [n x n]
shift = tf.reduce_mean(W, axis=0)
M = tf.clip_by_value(tf.nn.relu(W - shift)*10, 0, 1)
# Loss: L: The change to each loss effected by the Mask.
# L = [n]
l_list = []
for i in range(n):
h_i = H[i] # n x n
m_i = tf.transpose(tf.slice(M, [i, 0], [1, -1])) # n x 1
temp = tf.matmul(h_i, m_i) # n x 1
l_i = tf.reshape(tf.reduce_sum(0.5 * temp * m_i), [1])
l_list.append(l_i)
L = tf.concat(l_list, axis=0)
# Utility: U: The utility gained or lost via the loss.
U = L
Ws = tf.reduce_sum(W, axis=0, keepdims=True)
Wr = tf.div(tf.subtract(Ws, tf.reduce_min(Ws)), tf.subtract(tf.reduce_max(Ws), tf.reduce_min(Ws)))
AR = Wr * (1 - alphas)
R = tf.squeeze(tf.linalg.normalize(Wr, ord=1, axis=1)[0]) + 0.00001
AR = tf.squeeze(tf.linalg.normalize(AR, ord=1, axis=1)[0]) + 0.00001
# Divergence score: D: Divergence of each ranking from mean.
# D = [n]
W_avg = tf.reshape(tf.tile(tf.reduce_mean(W, axis=0), [n]), [n,n])
cross_entropy = -tf.reduce_sum(tf.multiply(W_avg, tf.log(W)), axis=1)
D = tf.nn.softmax(tf.reshape(cross_entropy, [n]))
# Payoff
P = U * alphas + R * (1 - alphas)
# Sorted Ranking
topk = tf.math.top_k(R, k=n, sorted=True)[1]
### Bellow Optimization.
# Bidders move in the direction of the gradient of the Payoff.
optimizer = tf.train.AdamOptimizer(hparams.learning_rate)
# Mode == Competitive: All nodes optimize only their local payoff.
train_steps = []
if mode == 'competitive' :
for i in range(hparams.n_nodes):
p_i = tf.slice(P, [i], [1])
w_i = w_list[i]
grads_and_vars_i = optimizer.compute_gradients(loss=-p_i, var_list=[w_i])
train_steps.append(optimizer.apply_gradients(grads_and_vars_i))
# Mode == Coordinated: Coordinated nodes optimize the aggregated payoff
elif mode == 'coordinated':
grads_and_vars = optimizer.compute_gradients(loss=-tf.reduce_mean(P), var_list=w_list)
train_steps.append(optimizer.apply_gradients(grads_and_vars))
elif mode == 'idealized':
grads_and_vars = optimizer.compute_gradients(loss=-tf.reduce_mean(U), var_list=w_list)
train_steps.append(optimizer.apply_gradients(grads_and_vars))
# Init the graph.
session.run(tf.global_variables_initializer())
# if mode == 'competitive':
# hparams.max_steps = hparams.max_steps * 10
for step_i in range(hparams.max_steps):
# Randomly choose participant to optimize
if mode == 'competitive':
step = random.choice(train_steps)
# Optimize all participants.
elif mode == 'coordinated':
step = train_steps[0]
# Optimize all participants.
elif mode == 'idealized':
step = train_steps[0]
# Run graph.
output = session.run(fetches =
{
'step': step,
'P': P,
'U': U,
'D': D,
'R': R,
'AR': AR,
'W': W,
'M': M,
'topk': topk,
})
if step_i % 500 == 0:
print (output['W'])
print (output['topk'])
# Return metrics.
return output
def kl(p, q):
"""Kullback-Leibler divergence D(P || Q) for discrete distributions
Parameters
----------
p, q : array-like, dtype=float, shape=n
Discrete probability distributions.
"""
p = numpy.asarray(p, dtype=numpy.float)
q = numpy.asarray(q, dtype=numpy.float)
return numpy.sum(numpy.where(p != 0, p * numpy.log(p / q), 0))
def trial(hparams):
# Hessians: H: The hessian of the loss w.r.t a change in weights.
# via second order taylor series approximation. First term is 0 at convergence.
# Second term is parameterized by the Hessian term.
# ∆L = M^t * H * M
print ('Hessians: H')
print ('∆L = M^t * H * M')
hessians = []
for i in range(hparams.n_nodes):
h_i = numpy.random.randn(hparams.n_nodes, hparams.n_nodes)
h_i = (h_i - numpy.min(h_i))/numpy.ptp(h_i)
h_i = h_i/h_i.sum(axis=1, keepdims=1)
# print (h_i)
# print ('')
hessians.append(h_i)
print ('')
# Initial Weights: W: The bids.
# W = [n x n]
print ('Weights: W')
weights = []
for i in range(hparams.n_nodes):
w_i = numpy.random.randn(1, hparams.n_nodes)
w_i = (w_i - numpy.min(w_i))/numpy.ptp(w_i)
w_i = w_i/w_i.sum(axis=1, keepdims=1)
#print (w_i)
#print ('')
weights.append(w_i)
print ('')
# Alphas: A: The trade off between optimizing Utility vs optimizing for
# ranking. P = αU + (1- α)R
print ('Alphas: A')
print ('P = αU + (1- α)R')
alphas = numpy.random.randn(hparams.n_nodes)
alphas = (alphas - numpy.min(alphas))/numpy.ptp(alphas)
#print (alphas)
print ('')
# Run coordinated weight convergence.
ideal_output = alloc('idealized', hessians, weights, alphas, hparams)
# Run coordinated weight convergence.
coord_output = alloc('coordinated', hessians, weights, alphas, hparams)
# Run competitive weight convergence.
comp_output = alloc('competitive', hessians, weights, alphas, hparams)
print ('Idealized Weights: W')
print (ideal_output['W'])
print ('')
print ('Coordinated Weights: W')
print (coord_output['W'])
print ('')
print ('Competitive Weights: W')
print (comp_output['W'])
print ('')
print ('Idealized Mask: M')
print ('M = σ ( W - avg(W) )')
print (ideal_output['M'])
print ('')
print ('Coordinated Mask: M')
print ('M = σ ( W - avg(W) )')
print (coord_output['M'])
print ('')
print ('Competitive Mask: M')
print ('M = σ ( W - avg(W) )')
print (comp_output['M'])
print ('')
# Alphas: A: The trade off between optimizing Utility vs optimizing for
# ranking. P = αU + (1- α)R
print ('Alphas: A')
print ('P = αU + (1- α)R')
print (alphas)
print ('')
# print ('Idealized Divergence: D')
# print ('D = KL ( Q, avg(Q) )')
# print (ideal_output['D'])
# print ('')
#
# print ('Coordinated Divergence: D')
# print ('D = KL ( Q, avg(Q) )')
# print (coord_output['D'])
# print ('')
#
# print ('Competitive Divergence: D')
# print ('D = KL ( Q, avg(Q) )')
# print (comp_output['D'])
# print ('')
print ('Idealized Ranking: R')
print ('softmax(sum(W, axis=0))')
print (ideal_output['R'])
print ('')
print ('Coordinated Ranking: R')
print ('softmax(sum(W, axis=0))')
print (coord_output['R'])
print ('')
print ('Competitive Ranking: R')
print ('softmax(sum(W, axis=0))')
print (comp_output['R'])
print ('')
print ('Idealized Ranking: AR')
print ('softmax(sum(W, axis=0))')
print (ideal_output['AR'])
print ('')
print ('Coordinated Ranking: AR')
print ('softmax(sum(W, axis=0))')
print (coord_output['AR'])
print ('')
print ('Competitive Ranking: AR')
print ('softmax(sum(W, axis=0))')
print (comp_output['AR'])
print ('')
print ('Idealized Utility: U')
print ('U = M^t * H * M')
print (ideal_output['U'])
print ('')
print ('Coordinated Utility: U')
print ('U = M^t * H * M')
print (coord_output['U'])
print ('')
print ('Competitive Utility: U')
print ('U = M^t * H * M')
print (comp_output['U'])
print ('')
print ('Idealized Payoff: P')
print ('P = U')
print (ideal_output['P'])
print ('Avg:' + str(sum(ideal_output['P'])/hparams.n_nodes))
print ('')
print ('Coordinated Payoff: P')
print ('P = A * U + (1 - A) * R')
print (coord_output['P'])
print ('Avg:' + str(sum(coord_output['P'])/hparams.n_nodes))
print ('')
print ('Competitive Payoff: P')
print ('P = A * U + (1 - A) * R')
print (comp_output['P'])
print ('Avg:' + str(sum(comp_output['P'])/hparams.n_nodes))
print ('')
print ('Idealized sorted: ' + str(ideal_output['topk']))
print ('')
print ('Coordinated sorted: ' + str(coord_output['topk']))
print ('')
print ('Competitve sorted: ' + str(comp_output['topk']))
print ('')
coord_divergence = kl(ideal_output['R'], coord_output['R'])
print ('Coordinated Ranking KL Divergence: ' + str(coord_divergence))
print ('')
comp_divergence = kl(ideal_output['R'], comp_output['R'])
print ('Competitve Ranking KL Divergence: ' + str(comp_divergence))
print ('')
coord_divergence = kl(ideal_output['R'], coord_output['AR'])
print ('Coordinated Ranking KL Divergence: ' + str(coord_divergence))
print ('')
comp_divergence = kl(ideal_output['R'], comp_output['AR'])
print ('Competitve Ranking KL Divergence: ' + str(comp_divergence))
print ('')
ideal_sparsity = numpy.count_nonzero(ideal_output['M'])/ideal_output['M'].size
print ('Idealized Mask Sparsity: ' + str(ideal_sparsity))
print ('')
coord_sparsity = numpy.count_nonzero(coord_output['M'])/coord_output['M'].size
print ('Coordinated Mask Sparsity: ' + str(coord_sparsity))
print ('')
comp_sparsity = numpy.count_nonzero(comp_output['M'])/comp_output['M'].size
print ('Competitive Mask Sparsity: ' + str(comp_sparsity))
print ('')
coord_ideal_poa = sum(coord_output['P']) / sum(ideal_output['P'])
print ('Coord-Ideal Price of Anarchy: ' + str(coord_ideal_poa))
ideal_poa = sum(comp_output['P']) / sum(ideal_output['P'])
print ('Comp-Ideal Price of Anarchy: ' + str(ideal_poa))
coord_poa = sum(comp_output['P']) / sum(coord_output['P'])
print ('Comp-Coord Price of Anarchy: ' + str(coord_poa))
return ideal_poa
# print ('Comp-ideal Matrix distance:')
# print (spatial.distance.cdist(comp_output['W'], ideal_output['W'], 'minkowski', p=2.))
# print ('Comp-coord Matrix distance:')
# print (spatial.distance.cdist(comp_output['W'], coord_output['W'], 'minkowski', p=2.))
# print ('Coord-ideal Matrix distance:')
# print (spatial.distance.cdist(coord_output['W'], ideal_output['W'], 'minkowski', p=2.))
def main(hparams):
poa = []
for _ in range(hparams.trials):
poa.append(trial(hparams))
print (poa)
if __name__ == "__main__":
tf.logging.set_verbosity(tf.logging.ERROR)
graph = tf.Graph()
session = tf.Session(graph=graph)
parser = argparse.ArgumentParser()
parser.add_argument(
'--trials',
default=1,
type=int,
help="Number of trials to run.")
parser.add_argument(
'--max_steps',
default=1000,
type=int,
help="Number of convergence steps to run.")
parser.add_argument(
'--learning_rate',
default=0.05,
type=float,
help="Optimizer Learning rate")
parser.add_argument(
'--n_nodes',
default=10,
type=int,
help="Number of nodes to simulate.")
hparams = parser.parse_args()
main(hparams)