-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
223 lines (177 loc) · 6.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from loguru import logger
import numpy as np
import random
import io
import tensorflow as tf
import time
import tensorflow_datasets as tfds
import networkx as nx
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from fa2 import ForceAtlas2
def load_data_and_constants(hparams):
'''Returns the dataset and sets hparams.n_inputs and hparamsn_targets.'''
# Load mnist data
dataset_builder = tfds.builder(hparams.dataset)
dataset_builder.download_and_prepare()
dataset = dataset_builder.as_dataset()
dataset_info = dataset_builder.info
# Load data features to extract shapes and targets
dataset_features = dataset_info.features
inputs_shape = [i for i in dataset_features['image'].shape if i is not None]
hparams.n_inputs = np.prod(inputs_shape)
hparams.n_targets = dataset_features['label'].num_classes
dataset = prepare_dataset(dataset, hparams.batch_size, hparams.n_inputs,
hparams.n_targets)
#hparams.n_inputs = 784
#hparams.n_targets = 10
return dataset, hparams
def one_hot_encode(target, num_classes):
one_hot_encoded_arr = np.zeros((num_classes, 1))
one_hot_encoded_arr[target] = 1
return one_hot_encoded_arr.flatten()
def prepare_dataset(dataset, batch_size, n_inputs, n_targets):
train = list(tfds.as_numpy(dataset['train']))
test = list(tfds.as_numpy(dataset['test']))
train_set = []
test_set = []
for t in range(0, len(train), batch_size):
train_batch = []
for i in range(t, t + batch_size):
train_batch.append([
train[i]['image'].reshape(1, n_inputs).astype(
np.float32).flatten(),
one_hot_encode(train[i]['label'], n_targets)
])
train_set.append(train_batch)
for t in test:
test_set.append([
t['image'].reshape(1, n_inputs).astype(np.float32).flatten(),
one_hot_encode(t['label'], n_targets)
])
dataset['train'] = train_set
dataset['test'] = test_set
return dataset
def next_nounce():
return random.randint(0, 1000000000)
def next_run_prefix():
return str(int(time.time()))
def _networkx(components):
G = nx.DiGraph()
node_labels = {}
node_sizes = []
for c in components:
G.add_node(c.name)
node_labels[c.name] = str(c.name)
node_sizes.append(0.1 + c.revenue)
edge_labels = {}
for parent in components:
for child in components:
G.add_edge(parent.name, child.name)
edge_labels[(parent.name,
child.name)] = "%.3f" % parent.weights[child.name]
forceatlas2 = ForceAtlas2(
# Behavior alternatives
outboundAttractionDistribution=True, # Dissuade hubs
linLogMode=False, # NOT IMPLEMENTED
adjustSizes=False, # Prevent overlap (NOT IMPLEMENTED)
edgeWeightInfluence=1.0,
# Performance
jitterTolerance=1.0, # Tolerance
barnesHutOptimize=True,
barnesHutTheta=1.2,
multiThreaded=False, # NOT IMPLEMENTED
# Tuning
scalingRatio=2.0,
strongGravityMode=False,
gravity=1.0,
# Log
verbose=False)
positions = nx.layout.circular_layout(G)
pos_higher = {}
y_off = 0.2
for k, v in positions.items():
pos_higher[k] = (v[0], v[1] + y_off)
nx.draw_networkx_nodes(G,
positions,
with_labels=True,
node_size=node_sizes,
node_color="blue",
alpha=0.4)
nx.draw_networkx_edges(G,
positions,
arrowstyle='->',
arrowsize=15,
edge_color="green",
edge_labels=edge_labels,
alpha=0.05,
label_pos=0.3)
nx.draw_networkx_labels(G, pos_higher, node_labels)
nx.draw_networkx_edge_labels(G,
pos_higher,
edge_labels=edge_labels,
with_labels=True,
label_pos=0.3)
def metagraph_summary(components, tblogger, run_prefix, step, hparams):
figure = plt.figure(figsize=(10, 10))
plt.axis('off')
plt.savefig(hparams.log_dir + "/" + run_prefix + str('/metagraph'))
_networkx(components)
tblogger.log_plot('metagraph', step)
plt.close()
class TBLogger(object):
"""Logging in tensorboard without tensorflow ops."""
def __init__(self, log_dir):
"""Creates a summary writer logging to log_dir."""
self.writer = tf.compat.v1.summary.FileWriter(log_dir)
def log_scalar(self, tag, value, step):
"""Log a scalar variable.
Parameter
----------
tag : basestring
Name of the scalar
value
step : int
training iteration
"""
summary = tf.compat.v1.Summary(
value=[tf.compat.v1.Summary.Value(tag=tag, simple_value=value)])
self.writer.add_summary(summary, step)
def log_plot(self, tag, step):
output = io.BytesIO()
plt.savefig(output, format='png')
image_string = output.getvalue()
output.close()
# Create an Image object
img_sum = tf.compat.v1.Summary.Image(encoded_image_string=image_string,
height=10,
width=10)
# Create and write Summary
summary = tf.compat.v1.Summary(value=[tf.compat.v1.Summary.Value(tag=tag, image=img_sum)])
self.writer.add_summary(summary, step)
def log_histogram(self, tag, values, step, bins=1000):
"""Logs the histogram of a list/vector of values."""
# Convert to a numpy array
values = np.array(values)
# Create histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill fields of histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values**2))
# Requires equal number as bins, where the first goes from -DBL_MAX to bin_edges[1]
# See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/summary.proto#L30
# Thus, we drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.compat.v1.Summary(value=[tf.compat.v1.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
self.writer.flush()