-
Notifications
You must be signed in to change notification settings - Fork 0
/
rule3.conf
66 lines (53 loc) · 1.46 KB
/
rule3.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/**
* Mind the Gap! -- 2021
* Configuration file used in the case study of the "Mind the Gap!" 2021 paper.
* Running Instructions
* ====================
* Linux, Mac (and other systems)
* download the dl-learner environment from https://dl-learner.org/
* make sure the file "cli" is executable and run it on the command line followed by the name of the file to process
* ====================
* ¬Engine ⊔ (∃ isComponentOfVehicle.Vehicle) (pred. acc.: 100,00%, F-measure: 100,00%)
* Engine ⊑ (∃ isComponentOfVehicle.Vehicle) (pred. acc.: 100,00%, F-measure: 100,00%%)
*
*/
// declare some prefixes to use as abbreviations
prefixes = [ ("ex","https://www.inf.unibz.it/krdb/core/investigation/") ]
rendering = "dlsyntax"
// knowledge source definition
ks.type = "OWL File"
ks.fileName = "car3.owl"
// reasoner
reasoner.type = "closed world reasoner"
reasoner.sources = { ks }
// learning problem
lp.type = "posNegStandard"
lp.positiveExamples = {
"ex:TOP0_0",
"ex:TOP0_1"
}
lp.negativeExamples = { "ex:TOP0_2",
"ex:TOP0_3",
"ex:TOP0_4",
"ex:TOP0_5"
}
op.type= "rho"
op.useHasValueConstructor = true
// create learning algorithm to run
alg.type = "celoe"
alg.maxExecutionTimeInSeconds = 1
alg.maxNrOfResults = 50
alg.allowedConcepts = {
//"ex:Vehicle",
//"ex:PurchasableItem",
//"ex:Boat",
//"ex:Car",
//"ex:Airplane"
"ex:Engine",
//"ex:Wheel",
"ex:isComponentOf"
//"ex:hasComponentVehicle"
//"ex:AmphibiousCar",
//"ex:VehiclePart"
}
alg.writeSearchTree = true