forked from art103/LasaurGrbl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
planner.c
678 lines (578 loc) · 26.8 KB
/
planner.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
/*
planner.c - buffers movement commands and manages the acceleration profile plan
Part of LasaurGrbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011 Sungeun K. Jeon
Copyright (c) 2011 Stefan Hechenberger
LasaurGrbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
LasaurGrbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
*/
#include <inttypes.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "planner.h"
#include "stepper.h"
#include "sense_control.h"
#include "config.h"
// The number of linear motions that can be in the plan at any give time
#define BLOCK_BUFFER_SIZE 48 // do not make bigger than uint8_t
#define NUM_RASTERS 3
static block_t block_buffer[BLOCK_BUFFER_SIZE]; // ring buffer for motion instructions
static volatile uint8_t block_buffer_head; // index of the next block to be pushed
static volatile uint8_t block_buffer_tail; // index of the block to process now
static volatile uint8_t block_buffer_tail_write;
static volatile uint8_t block_buffers_used;
// Ring buffer used for raster data.
static uint8_t raster_buffer[NUM_RASTERS][RASTER_BUFFER_SIZE];
static volatile uint8_t raster_buffer_next = 0;
static volatile uint8_t raster_buffer_count = 0;
static int32_t position[3]; // The current position of the tool in absolute steps
static volatile bool position_update_requested; // make sure to update to stepper position on next occasion
static double previous_unit_vec[3]; // Unit vector of previous path line segment
static double previous_nominal_speed; // Nominal speed of previous path line segment
// prototypes for static functions (non-accesible from other files)
static int8_t next_block_index(int8_t block_index);
static int8_t prev_block_index(int8_t block_index);
static double estimate_acceleration_distance(double initial_rate, double target_rate, double acceleration);
static double intersection_distance(double initial_rate, double final_rate, double acceleration, double distance);
static double max_allowable_speed(double acceleration, double target_velocity, double distance);
static void calculate_trapezoid_for_block(block_t *block, double entry_factor, double exit_factor);
static void reduce_entry_speed_reverse(block_t *current, block_t *next);
static void reduce_entry_speed_forward(block_t *previous, block_t *current);
static void planner_recalculate();
// Add a new linear movement to the buffer. x, y and z is
// the signed, absolute target position in millimeters. Feed rate specifies the speed of the motion.
static void planner_movement(double x, double y, double z,
double feed_rate, double acceleration,
uint8_t nominal_laser_intensity, uint16_t ppi,
raster_t *raster) {
// calculate target position in absolute steps
int32_t target[3];
if (sense_ignore == 0) {
// Make sure we stay within our limits
#if defined(CONFIG_X_MIN)
x=max(x, CONFIG_X_MIN);
#endif
#if defined(CONFIG_X_MAX)
x=min(x, CONFIG_X_MAX);
#endif
#if defined(CONFIG_Y_MIN)
y=max(y, CONFIG_Y_MIN);
#endif
#if defined(CONFIG_Y_MAX)
y=min(y, CONFIG_Y_MAX);
#endif
#if defined(CONFIG_Z_MIN)
z=max(z, CONFIG_Z_MIN);
#endif
#if defined(CONFIG_Z_MAX)
z=min(z, CONFIG_Z_MAX);
#endif
}
target[X_AXIS] = lround(x*x_steps_per_mm);
target[Y_AXIS] = lround(y*y_steps_per_mm);
target[Z_AXIS] = lround(z*CONFIG_Z_STEPS_PER_MM);
// calculate the buffer head and check for space
int next_buffer_head = next_block_index( block_buffer_head );
while(block_buffer_tail == next_buffer_head) { // buffer full condition
// good! We are well ahead of the robot. Rest here until buffer has room.
// sleep_mode();
}
block_buffers_used++;
// handle position update after a stop
if (position_update_requested) {
planner_set_position(stepper_get_position_x(), stepper_get_position_y(), stepper_get_position_z());
position_update_requested = false;
//printString("planner pos update\n"); // debug
}
// prepare to set up new block
block_t *block = &block_buffer[block_buffer_head];
// Setup the block type
if (raster == NULL) {
block->block_type = BLOCK_TYPE_LINE;
} else {
block->block_type = BLOCK_TYPE_RASTER_LINE;
memcpy(&block->raster, raster, sizeof(raster_t));
}
// set nominal laser intensity
block->laser_pwm = nominal_laser_intensity;
// compute direction bits for this block
block->direction_bits = 0;
if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<STEP_X_DIR); }
if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<STEP_Y_DIR); }
#ifndef MOTOR_Z
if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<STEP_Z_DIR); }
#else
if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= STEP_Z_MASK; }
#endif
// number of steps for each axis
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
block->step_event_count = max(block->steps_x, max(block->steps_y, block->steps_z));
if (block->step_event_count == 0) { return; }; // bail if this is a zero-length block
// compute path vector in terms of absolute step target and current positions
double delta_mm[3];
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/x_steps_per_mm;
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/y_steps_per_mm;
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/CONFIG_Z_STEPS_PER_MM;
block->millimeters = sqrt( (delta_mm[X_AXIS]*delta_mm[X_AXIS]) +
(delta_mm[Y_AXIS]*delta_mm[Y_AXIS]) +
(delta_mm[Z_AXIS]*delta_mm[Z_AXIS]) );
double inverse_millimeters = 1.0/block->millimeters; // store for efficency
// calculate nominal_speed (mm/min) and nominal_rate (step/min)
// minimum stepper speed is limited by MINIMUM_STEPS_PER_MINUTE in stepper.c
block->nominal_speed = feed_rate; // always > 0
block->nominal_rate = ceil(feed_rate * x_steps_per_mm); // always > 0
block->acceleration = acceleration;
// compute the acceleration rate for this block. (steps/min/min / ticks/min)
block->rate_delta = ceil( block->acceleration * CONFIG_X_STEPS_PER_MM / (ACCELERATION_TICKS_PER_SECOND * 60));
// Calculate the ppi steps
block->laser_mmpp = 0;
block->laser_ppi = 0;
if (ppi > 0) {
block->laser_ppi = ppi; // Only used by LCD output.
block->laser_mmpp = MM_PER_INCH / ppi;
}
//// acceleeration manager calculations
// Compute path unit vector
double unit_vec[3];
unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
// Compute max junction speed by centripetal acceleration approximation.
// Let a circle be tangent to both previous and current path line segments, where the junction
// deviation is defined as the distance from the junction to the closest edge of the circle,
// colinear with the circle center. The circular segment joining the two paths represents the
// path of centripetal acceleration. Solve for max velocity based on max acceleration about the
// radius of the circle, defined indirectly by junction deviation. This may be also viewed as
// path width or max_jerk in the previous grbl version. This approach does not actually deviate
// from path, but used as a robust way to compute cornering speeds, as it takes into account the
// nonlinearities of both the junction angle and junction velocity.
double vmax_junction = ZERO_SPEED; // prime for junctions close to 0 degree
if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
// Compute cosine of angle between previous and current path.
// vmax_junction is computed without sin() or acos() by trig half angle identity.
double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
if (cos_theta < 0.95) {
// any junction *not* close to 0 degree
vmax_junction = min(previous_nominal_speed, block->nominal_speed); // prime for close to 180
if (cos_theta > -0.95) {
// any junction not close to neither 0 and 180 degree -> compute vmax
double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
vmax_junction = min( vmax_junction, sqrt( block->acceleration * CONFIG_JUNCTION_DEVIATION
* sin_theta_d2/(1.0-sin_theta_d2) ) );
}
}
}
block->vmax_junction = vmax_junction;
// Initialize entry_speed. Compute based on deceleration to zero.
// This will be updated in the forward and reverse planner passes.
double v_allowable = max_allowable_speed(-block->acceleration, ZERO_SPEED, block->millimeters);
block->entry_speed = min(vmax_junction, v_allowable);
// Set nominal_length_flag for more efficiency.
// If a block can de/ac-celerate from nominal speed to zero within the length of
// the block, then the speed will always be at the the maximum junction speed and
// may always be ignored for any speed reduction checks.
if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
else { block->nominal_length_flag = false; }
block->recalculate_flag = true; // always calculate trapezoid for new block
// update previous unit_vector and nominal speed
memcpy(previous_unit_vec, unit_vec, sizeof(unit_vec)); // previous_unit_vec[] = unit_vec[]
previous_nominal_speed = block->nominal_speed;
//// end of acceleeration manager calculations
// move buffer head and update position
block_buffer_head = next_buffer_head;
memcpy(position, target, sizeof(target)); // position[] = target[]
planner_recalculate();
// make sure the stepper interrupt is processing
stepper_wake_up();
}
void planner_init() {
block_buffer_head = 0;
block_buffer_tail = 0;
block_buffer_tail_write = 0;
raster_buffer_next = 0;
raster_buffer_count = 0;
clear_vector(position);
planner_set_position( CONFIG_X_ORIGIN_OFFSET,
CONFIG_Y_ORIGIN_OFFSET,
CONFIG_Z_ORIGIN_OFFSET );
position_update_requested = false;
clear_vector_double(previous_unit_vec);
previous_nominal_speed = 0.0;
}
int8_t last_raster = 0;
// Process a raster.
// Rasters can be +/- in the x or y directions (not z).
void planner_raster(double x, double y, double z,
double feed_rate, double acceleration,
uint8_t nominal_laser_intensity,
raster_t *raster) {
double raster_len = 0;
double head = 0;
double ramp = pow(feed_rate, 2) / (2 * acceleration);
uint8_t bidirectional = (raster->bidirectional > 0)?1:0;
// Calculate how much to offset each raster by to compensate for laser lag
double offset = (feed_rate * raster->bidirectional / 60.0 / 1000000.0 / 2.0);
uint8_t *ptr = raster->buffer;
uint32_t count = raster->length;
// Truncate the start blank parts.
for (; *ptr == '0' && count > 0; ptr++, count--, head += raster->dot_size);
raster->buffer = ptr;
raster->length = count;
if (raster->length == 0)
return;
// Truncate the end blank parts.
ptr = raster->buffer + count - 1;
for (; *ptr == '0' && count > 1; ptr--, count--);
raster->length = count;
// Blank line
if (raster->length == 0)
return;
raster_len = raster->dot_size * raster->length;
x += head;
// Work out the starting point.
if (last_raster <= 0)
{
// We need to go forwards.
planner_movement(x - ramp - offset, y, z, feed_rate, acceleration, 0, 0, NULL);
planner_movement(x - offset, y, z, feed_rate, acceleration, 0, 0, NULL);
} else {
// We need to go backwards.
planner_movement(x + raster_len + ramp + offset, y, z, feed_rate, acceleration, 0, 0, NULL);
planner_movement(x + raster_len + offset, y, z, feed_rate, acceleration, 0, 0, NULL);
}
// Copy the data into our buffer
// If there isn't space, sit and spin here waiting.
while (1) {
if (raster_buffer_count < NUM_RASTERS) {
raster_buffer_count++;
if (last_raster <= 0) {
memcpy(raster_buffer[raster_buffer_next], raster->buffer, raster->length);
} else {
uint32_t i;
uint8_t *dst = raster_buffer[raster_buffer_next] + raster->length;
uint8_t *src = raster->buffer;
for (i=0; i<raster->length; ++i)
{
*dst-- = *src++;
}
}
raster->buffer = raster_buffer[raster_buffer_next];
raster_buffer_next++;
if (raster_buffer_next == NUM_RASTERS)
raster_buffer_next = 0;
break;
}
}
// Etch contiguous dots of the same value.
raster->intensity = nominal_laser_intensity;
if (last_raster <= 0)
{
// We need to go forwards.
planner_movement(x + raster_len - offset, y, z, feed_rate, acceleration, 0, 0, raster);
planner_movement(x + raster_len + ramp - offset, y, z, feed_rate, acceleration, 0, 0, NULL);
if (bidirectional != 0) {
last_raster = 1;
}
} else {
// We need to go backwards.
planner_movement(x + offset, y, z, feed_rate, acceleration, 0, 0, raster);
planner_movement(x - ramp + offset, y, z, feed_rate, acceleration, 0, 0, NULL);
if (bidirectional != 0) {
last_raster = -1;
}
}
}
// Add a new linear movement to the buffer. x, y and z is
// the signed, absolute target position in millimeters. Feed rate specifies the speed of the motion.
void planner_line(double x, double y, double z,
double feed_rate, double acceleration,
uint8_t laser_pwm, uint16_t ppi) {
last_raster = 0;
planner_movement(x, y, z, feed_rate, acceleration, laser_pwm, ppi, NULL);
}
void planner_dwell(double seconds, uint8_t nominal_laser_intensity) {
// // Execute dwell in seconds. Maximum time delay is > 18 hours, more than enough for any application.
// void mc_dwell(double seconds) {
// uint16_t i = floor(seconds);
// stepper_synchronize();
// _delay_ms(floor(1000*(seconds-i))); // Delay millisecond remainder
// while (i > 0) {
// _delay_ms(1000); // Delay one second
// i--;
// }
// }
}
void planner_command(uint8_t type) {
// calculate the buffer head and check for space
int next_buffer_head = next_block_index( block_buffer_head );
while(block_buffer_tail == next_buffer_head) { // buffer full condition
// good! We are well ahead of the robot. Rest here until buffer has room.
// sleep_mode();
}
// Prepare to set up new block
block_t *block = &block_buffer[block_buffer_head];
// set block type command
block->block_type = type;
// Move buffer head
block_buffer_head = next_buffer_head;
// make sure the stepper interrupt is processing
stepper_wake_up();
}
int planner_blocks_available(void) {
int next_buffer_head = next_block_index( block_buffer_head );
if (next_buffer_head == block_buffer_tail)
return 0;
else if (next_buffer_head >= block_buffer_tail)
return BLOCK_BUFFER_SIZE - (next_buffer_head - block_buffer_tail);
else
return block_buffer_tail - next_buffer_head;
}
/*
----T****H-----
**H---------T**
*/
block_t *planner_get_current_block()
{
if (block_buffer_head == block_buffer_tail)
{
return(NULL);
}
block_buffer_tail_write = next_block_index(block_buffer_tail);
return(&block_buffer[block_buffer_tail]);
}
void planner_discard_current_block()
{
if (block_buffer_head != block_buffer_tail)
{
if (block_buffer[block_buffer_tail].block_type == BLOCK_TYPE_RASTER_LINE)
{
raster_buffer_count--;
}
block_buffer_tail = next_block_index( block_buffer_tail );
block_buffer_tail_write = block_buffer_tail;
}
}
void planner_reset_block_buffer() {
block_buffer_head = 0;
block_buffer_tail = 0;
block_buffer_tail_write = 0;
block_buffers_used = 0;
raster_buffer_count = 0;
raster_buffer_next = 0;
}
// Reset the planner position vector and planner speed
void planner_set_position(double x, double y, double z) {
position[X_AXIS] = lround(x*x_steps_per_mm);
position[Y_AXIS] = lround(y*y_steps_per_mm);
position[Z_AXIS] = lround(z*CONFIG_Z_STEPS_PER_MM);
previous_nominal_speed = 0.0; // resets planner junction speeds
clear_vector_double(previous_unit_vec);
}
void planner_request_position_update() {
position_update_requested = true;
}
// Returns the index of the next block in the ring buffer.
static int8_t next_block_index(int8_t block_index) {
block_index++;
if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; } // cheaper than module (%)
return block_index;
}
// Returns the index of the previous block in the ring buffer
static int8_t prev_block_index(int8_t block_index) {
if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
block_index--;
return block_index;
}
/* target rate -> +
** /|
** / |
** / |
** / |
** initial rate -> +----+
** ^
** |
** DISTANCE
*/
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate
static double estimate_acceleration_distance(double initial_rate, double target_rate, double acceleration) {
return( (target_rate*target_rate-initial_rate*initial_rate)/(2*acceleration) );
}
/* + <- some maximum rate we don't care about
** /|\
** / | \
** / | + <- final_rate
** / | |
** initial_rate -> +----+--+
** ^ ^
** | |
** INTERSECTION_DISTANCE distance
*/
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
// a total travel of distance. This can be used to compute the intersection point between acceleration and
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
static double intersection_distance(double initial_rate, double final_rate, double acceleration, double distance) {
return( (2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4*acceleration) );
}
/* + <- MAX_ALLOWABLE_SPEED
** |\
** | \
** | \
** | \
** +----+ <- target velocity
** ^
** |
** distance
*/
// Calculate the beginning speed that results in target_velocity when accelerated over given distance.
static double max_allowable_speed(double acceleration, double target_velocity, double distance) {
return( sqrt(target_velocity*target_velocity-2*acceleration*distance) );
}
/*
** +--------+ <- nominal_rate
** /| |\
** nominal_rate*entry_factor -> + | | \
** | | | + <- nominal_rate*exit_factor
** +-+--------+--+
** ^ ^
** | |
** accelerate_until decelerate_after
*/
// Calculates accelerate_until and decelerate_after.
static void calculate_trapezoid_for_block(block_t *block, double entry_factor, double exit_factor) {
block->initial_rate = ceil(block->nominal_rate * entry_factor); // (step/min)
block->final_rate = ceil(block->nominal_rate * exit_factor); // (step/min)
int32_t acceleration_per_minute = block->rate_delta * ACCELERATION_TICKS_PER_SECOND * 60; // (step/min^2)
int32_t accelerate_steps =
ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration_per_minute));
int32_t decelerate_steps =
floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration_per_minute));
// Calculate the size of Plateau of Nominal Rate.
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
// Handle special case where we don't reach a plateau.
if (plateau_steps < 0) {
accelerate_steps = ceil( intersection_distance( block->initial_rate, block->final_rate,
acceleration_per_minute, block->step_event_count ) );
accelerate_steps = max(accelerate_steps, 0); // check limits due to numerical round-off
accelerate_steps = min(accelerate_steps, block->step_event_count);
plateau_steps = 0;
}
block->accelerate_until = accelerate_steps;
block->decelerate_after = accelerate_steps+plateau_steps;
}
static void reduce_entry_speed_reverse(block_t *current, block_t *next) {
// 'next' here is the newer/later block, not the next in the iteration
// time->
// [tail][][][current][next][][][][head] -> loops around to tail
// processing -> queuing->
//
// Reduce entry_speed if necessary so next entry_speed can definitely be reached with
// fixed acceleration. This is specifically relevant for short blocks that never plateau.
// Skip if we already flagged the block as plateauing or vmax <= next entry_speed.
if ((!current->nominal_length_flag) && (current->vmax_junction > next->entry_speed)) {
current->entry_speed = min( current->vmax_junction, max_allowable_speed(
-next->acceleration, next->entry_speed, current->millimeters) );
} else {
current->entry_speed = current->vmax_junction;
}
current->recalculate_flag = true;
// no worries about last block, forward pass takes care of it
}
static void reduce_entry_speed_forward(block_t *previous, block_t *current) {
// 'previous' here is the older/earlier block, not the previous in the iteration
// time->
// [tail][][][previous][current][][][][head] -> loops around to tail
// processing -> queuing->
//
// Reduce entry_speed if necessary so it can be reached from previous entry_speed with
// fixed acceleration. This is specifically relevant for short blocks that never plateau.
// Skip if we already flagged the previous block as plateauing or entry_speed <= previous entry_speed.
if (!previous->nominal_length_flag) {
if (previous->entry_speed < current->entry_speed) {
double entry_speed = min( current->entry_speed,
max_allowable_speed(-current->acceleration, previous->entry_speed, previous->millimeters) );
// Check for junction speed change
if (current->entry_speed != entry_speed) {
current->entry_speed = entry_speed;
current->recalculate_flag = true;
}
}
}
}
// planner, called whenever a new block was added
// All planner computations are performed with doubles (float on Arduinos) to minimize numerical round-
// off errors. Only when planned values are converted to stepper rate parameters, these are integers.
static void planner_recalculate() {
//// reverse pass
// Recalculate entry_speed to be (a) less or equal to vmax_junction and
// (b) low enough so it can definitely reach the next entry_speed at fixed acceleration.
int8_t block_index = block_buffer_head;
block_t *previous = NULL; // block closer to tail (older)
block_t *current = NULL; // block who's entry_speed to be adjusted
block_t *next = NULL; // block closer to head (newer)
while(block_index != block_buffer_tail_write) {
block_index = prev_block_index( block_index );
next = current;
current = previous;
previous = &block_buffer[block_index];
if (current && next) {
reduce_entry_speed_reverse(current, next);
}
} // skip tail/first block
//// forward pass
// Recalculate entry_speed to be low enough it can definitely
// be reached from previous entry_speed at fixed acceleration.
block_index = block_buffer_tail_write;
previous = NULL; // block closer to tail (older)
current = NULL; // block who's entry_speed to be adjusted
next = NULL; // block closer to head (newer)
while(block_index != block_buffer_head) {
previous = current;
current = next;
next = &block_buffer[block_index];
if (previous && current) {
reduce_entry_speed_forward(previous, current);
}
block_index = next_block_index(block_index);
}
if (current && next) {
reduce_entry_speed_forward(current, next);
}
//// recalculate trapeziods for all flagged blocks
// At this point all blocks have entry_speeds that that can be (a) reached from the prevous
// entry_speed with the one and only acceleration from our settings and (b) have junction
// speeds that do not exceed our limits for given direction change.
// Now we only need to calculate the actual accelerate_until and decelerate_after values.
block_index = block_buffer_tail_write;
current = NULL;
next = NULL;
while(block_index != block_buffer_head) {
current = next;
next = &block_buffer[block_index];
if (current) {
if (current->recalculate_flag || next->recalculate_flag) {
calculate_trapezoid_for_block( current,
current->entry_speed/current->nominal_speed,
next->entry_speed/current->nominal_speed );
current->recalculate_flag = false;
}
}
block_index = next_block_index( block_index );
}
// always recalculate last (newest) block with zero exit speed
calculate_trapezoid_for_block( next,
next->entry_speed/next->nominal_speed, ZERO_SPEED/next->nominal_speed );
next->recalculate_flag = false;
}