-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy path1383. Maximum Performance of a Team.ts
76 lines (71 loc) · 2.14 KB
/
1383. Maximum Performance of a Team.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
class Heap<T=number> {
data: Array<T | null>
lt: (i: number, j: number) => boolean
constructor ()
constructor (data: T[])
constructor (cmp: (lhs: T, rhs: T) => boolean)
constructor (data: T[], cmp: (lhs: T, rhs: T) => boolean)
constructor (data: (T[] | ((lhs: T, rhs: T) => boolean)), cmp: (lhs: T, rhs: T) => boolean)
constructor (data: (T[] | ((lhs: T, rhs: T) => boolean)) = [], cmp = (lhs: T, rhs: T) => lhs < rhs) {
if (typeof data === 'function') {
cmp = data
data = []
}
this.data = [null, ...data]
this.lt = (i, j) => cmp(this.data[i]!, this.data[j]!)
for (let i = this.size(); i > 0; i--) this.heapify(i)
}
size (): number {
return this.data.length - 1
}
push (v: T): void {
this.data.push(v)
let i = this.size()
while ((i >> 1 !== 0) && this.lt(i, i >> 1)) this.swap(i, i >>= 1)
}
pop (): T {
this.swap(1, this.size())
const top = this.data.pop()
this.heapify(1)
return top!
}
top (): T { return this.data[1]! }
heapify (i: number): void {
while (true) {
let min = i
const [l, r, n] = [i * 2, i * 2 + 1, this.data.length]
if (l < n && this.lt(l, min)) min = l
if (r < n && this.lt(r, min)) min = r
if (min !== i) {
this.swap(i, min); i = min
} else break
}
}
swap (i: number, j: number): void {
const d = this.data;
[d[i], d[j]] = [d[j], d[i]]
}
}
/*
speed 越大越好,但是要控制住 efficiency 的最小值不能太小
effi 从大到小遍历,依次放入能够放的所有 engineer,然后选其中最大的 k 个,因此只需要维护一个大小为 k 的最小堆即可
*/
function maxPerformance (n: number, s: number[], e: number[], k: number): number {
const idx = [...Array(n)].map((_, idx) => idx)
const heap = new Heap<bigint>()
idx.sort((i, j) => e[j] - e[i])
let [sum, ans] = [0n, 0n]
for (let i = 0; i < n; i++) {
const sb = BigInt(s[idx[i]])
heap.push(sb)
sum += sb
while (heap.size() > k) {
sum -= heap.pop()
}
if (ans < sum * BigInt(e[idx[i]])) {
ans = sum * BigInt(e[idx[i]])
}
}
const P = BigInt(1e9 + 7)
return Number(ans % P)
};