From e83bd79983eaa835470173d3c9d419d65bafd1ea Mon Sep 17 00:00:00 2001 From: "Yury G. Kudryashov" Date: Sun, 15 Dec 2024 20:02:50 -0600 Subject: [PATCH] Add a proof --- blueprint/src/content.tex | 27 ++++++++++++++++++++++++--- 1 file changed, 24 insertions(+), 3 deletions(-) diff --git a/blueprint/src/content.tex b/blueprint/src/content.tex index 11e27e4..bd82b48 100644 --- a/blueprint/src/content.tex +++ b/blueprint/src/content.tex @@ -281,16 +281,37 @@ \section{Functions whose zeros include a given set} Let \(E\) be a finite dimensional real normed space. Let \(F\) be a real normed space. Consider a function \(f\colon E\to F\), points \(a, b \in E\), - and numbers \(C\ge 0\), \(\delta\ge 0\), \(\alpha\ge 0\) such that + and numbers \(C\ge 0\), \(\delta\ge 0\), \(r \ge 0\) such that \begin{itemize} \item \(f\) is differentiable on \([a, b]\); - \item \(\|D_{b - a}f(a + t(b - a))\| \le Ct^{\alpha}{\|b - a\|}^{1+\alpha}\); + \item \(\|D_{b - a}f(a + t(b - a))\| \le Ct^{r}{\|b - a\|}^{1+r}\); \item the set of \(t\) such that \(D_{b - a}f(a + t(b - a)) = 0\) has measure at least \(1 - \delta\). \end{itemize} - Then \(\|f(b) - f(a)\| \le C\delta{\|b - a\|}^{1+\alpha}\). + Then \(\|f(b) - f(a)\| \le C\delta{\|b - a\|}^{1+r}\). \end{lemma} +\begin{proof} + Let \(s\) be the set of \(t \in [0, 1]\) such that \(D_{b - a}f(a + t(b - a)) \ne 0\). + We have + \begin{align*} + \|f(b) - f(a)\| &= \left|\int_{0}^{1} D_{b - a}f(a + t(b - a))\,dt\right| \\ + &= \left|\int_{t\in s} D_{b - a}f(a + t(b - a))\,dt\right| \\ + &\le \int_{t \in s} Ct^{r}{\|b - a\|}^{1+r}\,dt \\ + &= C{\|b - a\|}^{1+r} \int_{t \in s}t^{r}\,dt \\ + &\le C{\|b - a\|}^{1+r} \lambda(s) \\ + &\le C\delta {\|b - a\|}^{1+r} + \end{align*} +\end{proof} + +\begin{remark} + The constant can be improved, but probably we don't need this. + In order to do this, we need to show that + \[ + \int_{t \in s}t^{r}\,dt \le \int_{1 - \delta}^{1} t^{r}\,dt = \frac{1 - {(1 - \delta)}^{r + 1}}{r + 1}. + \] +\end{remark} + \begin{lemma}% \label{lem:cdh-at-sub-affine-isBigO} \uses{def:cdh-at}